Sexual reproductive body can be produced from a fertilized ovum. Once the ovum is fertilized with sperm, it runs
through the cell division, differentiates to all kinds of cells, and goes to make a complete body. However, not all of them are
viable and some of them stop to ontogenesis showing the developmental abnormality. In order to discriminate the egg
quality, we apply Raman spectroscopy for fish egg. After the measurement, these Raman data are checked up with the
information about the eggs can survive or not, and we examine what factors are important in egg components to distinguish
between “good quality” and “not good quality”. We present the results of assessment of egg quality, and investigate
whether Raman spectroscopy can be used to a discriminate of egg quality.
The esophageal cancer has a tendency to transfer to another part of the body and the surgical operation itself sometimes gives high risk in vital function because many delicate organs exist near the esophagus. So the esophageal cancer is a disease with a high mortality. So, in order to lead a higher survival rate five years after the cancer’s treatment, the investigation of the diagnosis methods or techniques of the cancer in an early stage and support the therapy are required. In this study, we performed the ex vivo experiments to obtain the Raman spectra from normal and early-stage tumor (stage-0) human esophageal sample by using Raman spectroscopy. The Raman spectra are collected by the homemade Raman spectrometer with the wavelength of 785 nm and Raman probe with 600-um-diameter. The principal component analysis (PCA) is performed after collection of spectra to recognize which materials changed in normal part and cancerous pert. After that, the linear discriminant analysis (LDA) is performed to predict the tissue type. The result of PCA indicates that the tumor tissue is associated with a decrease in tryptophan concentration. Furthermore, we can predict the tissue type with 80% accuracy by LDA which model is made by tryptophan bands.
The aim of the present study is to evaluate the capability of a miniaturized Raman endoscope (mRE) system to monitor the advancement of colorectal tumors in live model mice. The endoscope is narrow enough to observe the inside of the mouse colon under anesthesia. The mRE system allows to observe the tissues and to apply a miniaturized Raman probe for the measurement at any targeted point within the colon. Raman spectroscopy allows obtaining information about molecular composition without damaging the tissue (i.e., noninvasively). Continuous monitoring of the same tumor is carried out to study molecular alterations along with its advancement. The Raman spectra measured before and after the anticancer drug (5-FU) treatment indicated spectral changes in the tumor tissue. It suggests that the tumor is not cured but supposedly transformed to another tumor type after the treatment.
Our Raman probe that is called as ball-lens hollow fiber Raman probe (BHRP) had been proved
possessing capability to detect the biochemical alteration within biological tissue. Whether BHRP
has high capability and sensitivity in diagnosing the biochemical changing of tissue or not, mouse's
normal rectal and anorectal prolapse (AP) were decided to be used as a model for this non invasive
method. This AP is azoxymethane and DSS-induced mouse’s anorectal prolapse. Main outcome of
BHRP will be potential for non-invasive method in tumor diagnosing. BHRP spectra obtained were
a high quality and allowed analysis of their differences between normal rectal (control group) and
AP. After spectral acquisition and comparison with corresponding images of hematoxylin/eosinstained
section observation used to make the histopathologic diagnosing, BHRP detected some
differences within the region of moiety of DNA, protein (i.e. collagen) and lipid, then following with
the alteration of symmetric P=O stretching vibration compared with the normal rectal tissue. BHRP
discriminate normal tissue and AP in the real-time.
The esophageal cancer is a disease with a high mortality. In order to lead a higher survival rate five years after the
cancer’s treatment, we inevitably need a method to diagnose the cancer in an early stage and support the therapy. Raman spectroscopy is one of the most powerful techniques for the purpose. In the present study, we apply Raman spectroscopy to obtain ex vivo spectra of normal and early tumor human esophageal sample. The result of principal component analysis indicates that the tumor tissue is associated with a decrease in tryptophan concentration. Furthermore, we can predict the tissue type with 80% accuracy by linear discriminant analysis which model is made by tryptophan bands.
Ball-lens hollow fiber Raman Probe (BHRP) and FTIR spectroscopy were main tools in this study. Thus, both of
equipments detected the alteration of antisymmetric and symmetric P=O stretching vibration within our mice colorectal
tumor models. Some differences of spectra due to randomly the edge of each BHRP and FTIR attached the surface of
tumor during measurements. Meanwhile, the application of FTIR potentially differentiates the grade levels of non-clinic
samples colorectal tumor models at four different grades (normal, grade 1, grade 2 and grade 3). Detailed investigations
were assignable to wave numbers that publicized to represent biochemical alteration. The whole of investigated spectra
in the fingerprint region revealed some different peaks and shoulders, most of which were assignable to wave numbers
that exposed to represent biochemical alteration within the tissue. Differences in peak heights and peak ratio indicated
differences in biochemical composition of cancer from different grade level. However, all collected colorectal tumor
model at different peak was distinguishable, where antisymmetric and symmetric P=O stretching vibration was imaged
and mapped clearly by both equipments. Therefore, BHRP were comfortable for in vivo studies. Meanwhile FTIR
spectral analysis in combination with calibration curve might be used to distinguish cancer grade within colorectal tumor
model tissue for ex vivo study.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.