The precise interferometric systems employed in today's artificial satellites require semiconductor lasers of the
highest caliber. To this end, efforts to stabilize their oscillation frequencies and narrow spectrum line-widths
continue relentlessly. While a number of different approaches have been tested, none have provided overall,
long-term stability. Most recently, we employed a Doppler-free absorption line of Rb atoms, with a precision
temperature controller and an improved laser mount. In this instance, relative optical frequency stability rated
9.07×10-13≤σ(2,τ)≤7.54×10-10, in averaging time for 0.01s≤τ23s. By introducing an optical feedback, which
narrows the laser's linewidth, we obtained improved frequency stability.
The precise interferometric systems employed in today's artificial satellites require semiconductor lasers of the highest callibur. But,
one particularly large obstacle has stood in the way of their broad application; the stabilization of their oscillation frequencies. While a number of different approaches have been tested, none have provided overall, long-term stability. Most recently, we used a Doppler-free absorption line of Rb atoms with a precision temperature controller and an improved laser mount; in this instance, relative optical frequency stability rated 9.07×10-13 ≤ σ(2,τ) ≤ 7.54×10-10, in averaging time for 0.01s ≤ τ ≤ 23s. Furthermore, we heated the Rb cell to up to 313K, in order to enhance the control signal and improve oscillation frequency stability.
The precise interferometric systems employed in today's artificial satellites require semiconductor lasers of the highest callibur. But,
one particularly large obstacle has stood in the way of their broad application; the stabilization of their oscillation frequencies. While a number of different approaches have been tested, none have provided overall, long-term stability. Most recently, we used a Doppler-free absorption line of Rb atoms with a precision temperature controller and an improved laser mount; in this instance, relative optical frequency stability rated 9.07x10-13≤&sgr;(2,&tgr;)≤7.54x10-10, in averaging time for 0.01s≤&tgr;≤23s. By introducing optical feedback, which narrows the laser's linewidth, we obtained improved frequency stability.
Laser interferometers detect gravitational waves with a degree of accuracy and efficiency unimaginable even a few years
ago. The semiconductor lasers that are the primary light source for these devices are small, lightweight, durable and
energy-efficient. On the downside, the devices currently available are still marked by broad oscillation spectra, and
heightened sensitivity to fluctuations in injection current and /or ambient temperature. By applying a small sine wave to
the injection current, we modulate the oscillation frequency. This frequency-modulated beam is introduced to the
Avalanche photo diode through the Rb cell in the saturated absorption optical setup. The resulting signal and a reference
signal are detected simultaneously and combined, to produce an error signal, which, when fed back to the injection current,
stabilizes the diode's oscillation frequency at 2.12x10-12 ⩽ &sgr;(2,τ) ⩽ 5.88x10-11 in the averaging time between 0.4s to 65s.
An optical feedback method, which introduces the laser beam reflected by a mirror or a grating to the semiconductor laser
itself, is reported to narrow oscillation linewidth and improve frequency stability. We are now combining these two
techniques to further improve frequency stability.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.