Miniaturized silicon photonics spectrometers have great potential for mass market applications like medicine and hazard detection. However, the performance of state-of-the-art silicon spectrometers is limited by fabrication imperfections and temperature variations.
In this work, we present a fundamentally new strategy that combines machine learning algorithms and on-chip spatial heterodyne Fourier-transform spectroscopy to identify specific absorption features operated under a wide range of temperatures in the presence of fabrication imperfections. We experimentally show differentiation of four different input spectra with unknown temperature variations as large as 10 °C. This is about 100x increase in operational range, compared to state-of-the-art retrieval techniques.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.