The range of applications in which sensor networks can be deployed depends heavily on the ease with which sensor locations/orientations can be registered and the accuracy of this process. We present a scalable strategy for algorithmic network calibration using sensor measurements from non-cooperative objects. Specifically, we use recently developed separable likelihoods in order to scale with the number of sensors whilst capturing the overall uncertainties. We demonstrate the efficacy of our self-configuration solution using a real network of radar and lidar sensors for perimeter protection and compare the accuracy achieved to manual calibration.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.