We present a novel method to measure the range of an object in a lab setting. This is realised by utilizing the phase insensitive cross-correlation analysis of the probe and reference photons generated in a spontaneous parametric down-conversion process. In our technique, the comparative measurement of time-correlated photons after one is transmitted to the target direction and the copy of it retained at the lab allows to single out the signal from the noise lead to sense, range and imaging the sample.
Quantum Radar is a promising technology that could have a strong impact on the civilian and military realms. In this study we introduce a new concept design for implementing a Quantum Radar, based on the time and polarization correlations of the entangled photons for detection and identification and tracking of high-speed targets. The design is focused on extracting high resolution details of the target with precision timing of entangled photons that provides important operational capabilities like distinguishing a target from a decoy. The quantum entanglement properties guarantee the legitimacy of the photons captured by the search telescope. Time correlations of the photon detection events can be extracted via cross-correlation operation between two sets of photon detection time-tags for the entangled photons. The fact that the wavelengths of the entangled photons can be tuned also makes the Quantum Radar concept an enticing candidate for tracking stealth objects. We present the proof-of-principle test results of the Quantum Radar and discuss the technical challenges and limitations of the design.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.