Through an innovative public-private partnership, a new generation of high-fidelity hyperspectral imaging spectrometers has been designed to pinpoint, quantify, and track methane (CH4) and carbon dioxide (CO2) point-source emissions from super-emitters to help enable reduction of greenhouse gases in the Earth’s atmosphere. Two identical instruments, built concurrently at NASA Jet Propulsion Laboratory (referred to by JPL as the Carbon Plume Mapper project, CPM) and Planet Labs as part of the Carbon Mapper Coalition, feature an identical design which comprises a glass-ceramic, three-mirror anastigmat (TMA) telescope, held in place via a composite metering structure, and Dyson form spectrometer which reduces volume and mass for a fast (F/1.8) optical system. The telescope has a focal length and cross-track field of view (FOV) of 400 mm and 2.6 deg, respectively. Operating in the 400 – 2500 nm spectral range with 5.0 nm sampling, this spectrometer design has the sensitivity and resolution required to meet the demanding needs of space-based detection and quantification of CO2 and CH4 emissions. This work describes the instruments’ optomechanical configuration.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.