We report on an experimental and theoretical investigation on the laser ablation of silicon with THz bursts of fs pulses. Craters were generated by varying the burst features, i.e., the number of pulses and the intra-burst repetition rate, and compared to those obtained in Normal Pulse Mode (NPM). A general reduction of the thermal load was observed using bursts, though with a lower ablation rate. In fact, shallower craters were obtained when increasing the number of pulses and reducing the intra-burst repetition rates at fixed processing time and burst energy. However, for bursts at 2 THz, some combinations of process parameters allowed a higher specific ablation rate compared to NPM. Simulations based on the numerical solution of the density-dependent two temperature model showed that bursts with more pulses or with lower intra-burst repetition rates lead to a lower final temperature, thus supporting the experimental findings. This is ascribed to changes of the reflectivity dependent on the number of pulses. Accordingly, different amounts of energy are transferred from the laser pulse to the sample, which also leads to changes in specific ablation rates. The origin of such a behavior was found to be the non-linear absorption processes, especially the two-photon absorption.
A density-dependent two-temperature model is applied to describe laser excitation and the following relaxation processes of silicon in an external electric field. Two approaches on how to describe the effects of the external electric field are presented. The first approach avoids the buildup of internal electric fields due to charge separation by assuming ambipolar diffusion and adds an additional carrier-pair current. In the second approach, electrons and holes are treated separately to account for charge separation and the resulting shielding of the external electric field inside the material. The two approaches are compared to experimental results. Both the first approach and the experimental results show similar tendencies for optimization of laser ablation in the external electric field.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.