The conventional trend in algorithm implementation has been the reliance on advancements in process technology in order to satisfy the ever-increasing demand for high-speed processors, and computational systems. As current device technology approaches sub-100nm minimum device size, not only does the device geometry decrease, but switching times, and operating voltages also scale down. These gains come at the expense of increased layout complexity, and a greater susceptibility to parasitic effects in the interconnections. In this paper we will briefly overview the challenges that digital designers will have to face in the imminent future, and will provide suggestions on algorithmic measures which may be taken in order to overcome some of these obstacles. To
illustrate our point, we will present an analysis of a digital multiplication algorithm, which is predicted to outperform current
schemes, for future technologies.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.