Fiber-coupled diode modules have various applications in material processing and fiber laser pumping because of their high efficiency and high reliability. Commercial fiber-coupled diode modules using spatial beam combining and polarization beam combining cannot be employed in high-brightness applications, for example metal cutting, which demands a laser power exceeding 1 kW with a BPP of a few mm*mrad. Dense wavelength beam combining (DWBC) technology showed the possibility of further scaling-up the output power of fiber-coupled diode modules while maintaining the same beam quality that allows for fiber-coupled diode modules to be used in high-brightness applications. The efficiency, reliability, and brightness of fiber-coupled diode modules can be improved by using single emitters instead of laser diode bars as power sources in DWBC. Two types of high-brightness 100 µm/0.22 NA 2 kW fiber-coupled diode modules employing single-emitter-based DWBC technology, which have a wavelength range from 953 to 991 nm with 50% efficiency and a narrower wavelength range with 48% efficiency respectively, were developed for material processing and Raman fiber amplifier pumping. Furthermore, we combined 15 high-brightness 100 μm/0.22 NA 1.4 kW fiber-coupled diode modules into a 600 μm/0.22 NA fiber, achieving more than 22 kW at the output.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.