Proceedings Article | 25 September 2018
J. Wallace, Charles Miller, Shannon Zareh, Yuri Beregovski, Mayer Rud, Randall Bartos, James McGuire, Thomas Pagano, Daniel Wilson, Cynthia Brooks, Daniel Jaffe, Andre Wong, Didier Keymeulen, Peter Sullivan, Elliott Liggett, Michael Bernas, Amy Mainzer, Annmarie Eldering, Dejian Fu
KEYWORDS: Polarization, Sensors, Telescopes, Diffraction gratings, Carbon, Carbon monoxide, Optical design, Prisms, Spectral resolution, Spectroscopy
The Carbon Observatory Instrument Suite, or CARBO, consists of four carbon observing instruments sharing a common instrument bus, yet targeted for a particular wavelength band each with a unique science observation. They are: a) Instrument 1, wavelength centered at 756 nm for oxygen and solar-induced chlorophyll fluorescence (SIF) observations, b) Instrument 2, centered at 1629 nm, for carbon dioxide (CO2) and methane (CH4) observation, c) Instrument 3, centered at 2062 nm for carbon dioxide and d) Instrument 4, centered at 2328 for carbon monoxide (CO) and methane. From low-Earth orbit, these instruments have a field-of-view of 10 to 15 degrees, and a spatial resolution of 2 km square. These instruments have a spectral resolving power ranging from ten to twenty thousand, and can monitor columnaverage dry air mole fraction of carbon dioxide (XCO2) at 1.5 ppm, and methane (XCH4) at 7 ppb. These new instruments will advance the use of immersion grating technology in spectrometer instruments in order to reduce the size of the instrument, while improving performance. These compact, capable instruments are envisioned to be compatible with small satellites, yet modular to be configured to address the particular science questions at hand. Here we report on the current status of the instrument design and fabrication, focusing primarily on Instruments 1 and 2. We will describe the key science and engineering requirements and the instrument performance error budget. We will discuss the optical design with particular emphasis on the immersion grating, and the advantages this new technology affords compared to previous instruments. We will also discuss the status of the focal plane array and the detector electronics and housing. Finally, we report on a new approach – developed during this instrument design process - which enables simultaneous measurement of both orthogonal polarization states (S and P) over the field-of-view and optical bandpass. We believe this polarization sensing capability will enable science observations which were previously limited by instrumental and observational degeneracies. In particular: improved sensitivity to all species, better sensitivity to surface polarization effects, better constraints on aerosol scattering parameters, and superior discrimination of the vertical distribution of gases and aerosols.