Optical Sciences and Photonics are areas of growing importance that are too often missing from traditional undergraduate science and engineering curricula. Often, aspects of optics and photonics are picked up as side topics in undergraduate and graduate courses along the way to obtaining more traditional STEM (Science, Technology, Engineering and Mathematics) degrees. Since 2016, the annual Optical Sciences Winter School has been held during the winter break of the University of Arizona’s academic calendar. Its annual participants are now approximately 50 – 60 undergraduate students (mostly juniors and seniors) from US (United States) Universities who demonstrate an aptitude and talent for science and research. These students participate in a three- to five-day immersion experience, learning the many opportunities and benefits that choosing optics and photonics for their graduate studies can offer. The Optical Sciences Winter School (OSWS) brings together a motivated group of undergraduate students for a series of overview lectures teaching foundational topics in optics and their relation to current research. It also provides a forum for faculty, alumni, and invited guests to share results, approaches and methodologies in optics and photonics research and education that are unique to the undergraduate setting. This event is not focused on a specific school’s program but tries to highlight the diverse optics programs in the US. Many sessions in the program are filled with various invited faculties and researchers’ presentations from prominent optical physics and engineering undergraduate or graduate institutions.
The emerging field of quantum engineering seeks to design and construct quantum devices for use in technological applications. To do so, one must learn to prepare a physical system in a well defined quantum state, drive it though a specified evolution, and access its final state through measurement. Historically, some of the most successful laboratory platforms with which to explore these challenges have originated in the field of quantum optics. This work reviews some of the recent advances in single- and many atom quantum control at the College of Optical Science, and their integration into a novel atom-light quantum interface.
We have implemented a continuous measurement of the mean magnetic moment of an ensemble of atoms trapped in a far-off-resonance optical lattice, by detecting the Faraday rotation of one of the lattice beams after it has passed through the atom cloud. In a first demonstration experiment we have observed Larmor precession with high signal-to-noise ratio, and compared the performance of the measurement with a simple theory. Faraday spectroscopy offers an ideal method to monitor the atomic dynamics and will be applied to the study of quantum chaos in magneto-optical lattices. In principle the measurement sensitivity can be increased to the point where quantum backaction becomes significant, thereby opening the door to studies of quantum feedback, spin squeezing and the role played by quantum measurement in quantum/classical correspondence.
We form a 1D optical lattices for Cs atoms using light tuned a few thousand linewidths below the 6S1/2(F equals 4) yields 6P3/2(F' equals 5) transition at 852 nm. In this far-off- resonance lattice the time scale for damping of motional coherences and kinetic energy can be orders of magnitude longer than the vibrational oscillation period for atoms trapped in the lattice potential wells. Atoms are loaded directly into deeply bound states, by adiabatic transfer from a superimposed, near-resonance optical lattice. This yields a mean vibrational excitation n approximately equals 0.3, and localization (Delta) z approximately (lambda) /20 deep in the Lamb-Dicke regime. Light scattering subsequently heats the atoms, but the initial rate is only of order 10-3 vibrational quanta per oscillation period. Low vibrational excitation, localization in the Lamb-Dicke regime and low heating rates make these atoms good candidates for resolved- sideband Raman cooling, and for the generation and study of non-classical states of center-of-mass motion. We propose a scheme for resolved-sideband Raman cooling and quantum state preparation; the scheme employs Raman coupling between magnetic sublevels induced by the lattice light field itself.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.