Abnormal event detection in crowded scenes is a challenging task in the computer vision community. A hybrid motion descriptor named the multiscale histogram of first- and second-order motion is proposed for abnormal event detection. The second-order motion describes the change in motion and is extracted by optical flow-based instantaneous tracking, which avoids object tracking in crowded scenes. For the modeling of normal events, a kernel null Foley–Sammon transform (KNFST) is introduced. KNFST makes a projection in the null space, where normal samples of all types are treated jointly instead of considering each known class individually. Experiments conducted on two benchmark datasets and comparisons to state-of-the-art methods demonstrate the superiority of the proposed method.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.