Lead iodide (PbI2) is a layered material with unique optical and electrical properties. Despite being extensively studied in its bulk form and being used as a precursor for perovskite materials, the recently developed PbI2 nanosheets have shown a great promise for high-performance optoelectronic devices, such as flexible photodetectors, heterostructure photodetectors and nanolasers. These novel applications of PbI2 nanosheets, however, require careful characterisation of their crystalline structure. Here we experimentally and numerically demonstrate the nonlinear microscopy of PbI2 nanosheets. It is a non-invasive optical technique to precisely determine the thickness, crystalline orientation and strain.
Lead halide perovskites are widely applied in not only photovoltaics, but also on-chip light source, nanolaser, and photon detection. In order to promote the incorporation of perovskite into integrated devices, microscale color patterning flexibility is a very important step. Femtosecond (fs) laser fabrication has shown significant advantages of high spatial resolution, low surround damage, and high processing efficiency over the other laser fabrication. Compared to the state-of-art techniques, the straightforward fs-direct laser writing (fs-DLW) also has advantages of mask-free, simple one step, and contactless. Here, a specially designed formamidinium lead mixed-halide nanoplatelet (FAPb(BrxI1-x)3 NP) with gradient bandgap is fabricated by chemical vapor deposition method. Then, spatially resolved modulation of the fluorescence by fs-DLW is demonstrated on the as-grown NP. The fluorescence color is modulated from red to green under a controlled laser pulse, due to the replacement of iodide ions by bromide ions. Specifically, the as-grown NP (thickness≈800 nm) is with a gradual bromide-iodide composition along the depth, mainly exhibits an emission of 710-nm from the bottom iodine rich phase. After halide substitution induced by fs-DLW, new fluorescence peaks appear in the wavelength range of 540 to 700 nm, which is controlled by the fs-DLW conditions. The fluorescent color is spatially modulated from red to green, enabling microscale resolved multicolor emission, implying the potential applications in micro-encryption, sensors, multicolor displays, lasers, and light-emitting devices.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.