The ultraviolet (UV) light at 222nm can be absorbed by microbial DNA and RNA, changing their structures and achieving the effect of sterilization. Unlike commonly used UVC light, 222nm UV light is harmless to humans, making it a crucial role in disinfection and sterilization. Consequently, calibration of 222nm UV radiometers is also of great significance. In this paper, according to the characteristics of KrCl excimer lamp, the effects of different types of filters on the spectrum of sterilization lamp are studied, as well as the calibration method of UV radiometer, and the measurement uncertainty is evaluated.
Ultraviolet radiant exposure meter, also known as UV energy meter, is widely used in a multitude of fields, such as sterilization, climate change, solar photovoltaic, material aging, medical health, UV curing, lithography and so on. Ultraviolet exposure radiation meter is a commonly used instrument to measure ultraviolet radiation. Due to the particularity of the structure and the complexity of the influencing factors, the measurement error of commercial instruments is very high. Commonly used ultraviolet light sources include mercury lamps, LED light sources, metal halogen lamps and so on. This paper will study the calibration method of the ultraviolet exposure radiation meter, and evaluate the measurement uncertainty.
UV radiometers are used in many areas. There are many kinds of UV light sources with different peak wavelength and different wavelength range. The broadband UV radiometers are wildly used due to easy to use and low cost. However, there are some obvious disadvantages for the broadband radiometers. They cannot distinguish the spectral characteristics of UV sources. That will cause the spectral mismatch measurement error for the UV broadband radiometers calibration. Recently, the fiber spectroradiometer plays a more and more important role in this area. The fiber spectroradiometer is more portable and low cost compared to the double grating spectroradiometer. We can obtain the spectral characteristics and any UV irradiance using the fiber spectroradiometer. However, for most fiber spectroradiometers, we cannot use them to replace the UV broadband radiometers for the absolute irradiance measurement. There are four key effects for that. The first one is the stray light. Stray light effect is obvious for the fiber spectroradiometer, especially in the UV wavelength range. The second one is the temperature effect. The third one is the non-linearity effect. The fourth one is the bandwidth effect. This effect will cause the measurement error for the spectral distribution of the UV source. In this paper, we research the four factors that reduce the measurement accuracy of the fiber spectroradiometer in UV wavelength range.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.