The Rochester Institute of Technology Multi-Object Spectrometer (RITMOS) utilizes a Texas Instruments Digital Micromirror Device (DMD) for target selection, instead of the fiber bundles or customized slit masks normally used in multi-object spectroscopy. The DMD, which sits at the telescope focal plane, is an 848 x 600 array of 17 micron square mirrors that can individually deflect incident light into one of two output paths: an imaging path or a spectroscopy path. In standard operation, all light is deflected towards the imaging path, consisting of an Offner relay which reimages the DMD onto a CCD detector. The locations of spectroscopic targets are then noted, and the micromirrors corresponding to these targets are then deflected towards the spectroscopy path. This path utilizes a 1200 l/mm transmission grating to disperse images of the micromirror pattern onto a second CCD detector. The spectroscopic parameters (e.g., 0.66 Å/pixel dispersion for a 13.5 micron/pixel detector) were chosen for MK spectral classification. Among the benefits of replacing a fiber bundle or custom slit mask with a DMD are the latter's instantaneous reconfigurability and its aptitude for the study of compact fields. RITMOS is thus suited towards spectral classification surveys of star clusters. We present a description of the instrument, details of its design, and initial measurements, including multi-object stellar spectra.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.