Thermoregulation is a mammalian physiological function fulfilled in large part by autonomic control of blood flow. We demonstrate the variation in hematocrit (Hct) and intravascular volume (VV) in the peripheral circulation when the external means of maintaining the initial thermal disequilibrium is removed using a PV[O]H device capable of noninvasively measuring both Hct and VV with unprecedented sensitivity, accuracy and precision on a 3 second timescale. Calibrated using an FDA approved device now in standard use for monitoring Hct during dialysis, the PV[O]H detection limit for measuring Hct variation is ±0.03 where 45% is normal. Observing the return to thermal equilibrium at 2 separate anatomic locations, we observe the return to normal homeostasis in a matter of a few minutes. Heat induced vasodilation results in an antecedent increase in plasma volume in greater proportion than for red blood cells into the dilated capillaries. At equilibrium homeostasis i.e. when there is no externally maintained thermal gradient we observe periodic fluctuations in the peripheral Hct and VV on a roughly 15 second to 1.5 minute timescale.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.