A concept based on a two-mirror, three-reflection telescope has been investigated. Its anastigmatism and flat fielded properties, the compactness and optical performances over 2-2.5 arc deg field of view, make this optical system of high interest for the development of much larger telescopes than with Schmidt designs. The 2MTRT concept is a potential candidate for sky surveys with 2-3 meter class telescopes and particularily well adapted for UV space surveys. Preliminary developments have been carried out with the construction of a 30-cm prototype on Amoretti's design, providing encouraging results. At present, a 45-cm 2MTRT prototype has been realized for ground based sky survey of NEOs, based on active optics (MINITRUST), in order to overcome the difficulty of obtaining three aspherical surfaces. The primary and tertiary lie on the same double vase substrate, and have a rest profile. The hyperbolization is carried out in situ by air depressure. The secondary, in a tulip form substrate, has been hyperbolized by elastic relaxation. The project is planned for operation in 2003.
We describe a new three-reflection telescope (TRT) prototype, where the 30-cm primary mirror is acting as the first and the third reflecting surfaces with different figurings. The two surfaces were realized and polished separately, and then accurately aligned and glued together. This technique has added more flexibility to the original design. The telescope provides: wide (2°x2° square degrees) corrected and unvignetted field of view, flat-field focal surface, small encumbrance, and easy access to the focal plane instrumentation. These characteristics make the TRT in combination with large area CCD cameras, a useful instrument for wide-field observations from remote and hostile ground sites, such as the Antarctic Plateau. The prototype has been equipped with a 2kx2k thermoelectric cooled CCD camera using the San Diego State University SDSU controller. A second custom controller prototype has been developed for ongoing space and Antarctica applications, characterized by synchronous fast readout capabilities (two 14-bit channels each sampled at 3.3 Msamples/s) and suitable to be scaled to large array mosaic applications. This project is aimed at the discovery and tracking of potentially hazardous NEOs, and identification of transient events such as GRBs.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.