Quantum Key Distribution (QKD) technology has been considered as the ultimate physical layer security due to its dependencies on the physical laws of physics to generate quantum keys. However, for QKD to become functional for practical scenarios, it must be integrated with the classical optical networking infrastructure. Coping with optical nonlinearity from the classical represents a major challenge for QKD systems. In this paper, we take the advantage of the ultra-low nonlinearity of Hollow Core Nested Antiresonant Nodeless Fibre (HC-NANF) to demonstrate the coexistence of discrete-variable quantum key distribution channel with carrier-grade classical optical channels over a 2 km HC-NANF.
Quantum networks have begun to connect many users together with Quantum Key Distribution links. We present a scalable, full mesh, polarisation entanglement-based quantum network without trusted nodes. We discuss our progress towards building a dynamic quantum network with more users, long distance (≈50 km) links and improved polarisation stability in the optical fibres. Lastly, minimising the resource overhead and optimising the network control based on end-user requirements are important features we are incorporating into our network.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.