Stimulated Brillouin Scattering (SBS) provides a major limitation on power scaling in high power fiber lasers and amplifiers. Using wavefront shaping in highly multimode fibers provides a promising avenue to suppress SBS while maintaining good beam quality. We present here a generalized theory for SBS in multimode fiber amplifiers. We find the Stokes susceptibility in terms of eigenmode expansions of the vector optical and acoustic wave equations. An analytical form of the relevant gain matrix is obtained in terms of modal overlap integrals. We will discuss wavefront shaping strategies to suppress SBS based on the properties of the gain matrix.
Using a new class of optomechanical waveguides that produce large Brillouin nonlinearities, we realize Brillouin lasers, Brillouin amplifiers, and Brillouin-based signal processing technologies in silicon photonics. Counterintuitively, the same nanophotonic silicon waveguides that greatly enhance both Kerr and Raman nonlinearities exhibit vanishingly small Brillouin nonlinearities. Only with the advent of new optomechanical waveguides—that guide both light and sound—have Brillouin interactions been transformed into the strongest and most tailorable nonlinearities in silicon. We summarize progress in the rapidly growing field of integrated Brillouin photonics, and explain how a variety of simulated lightscattering processes can be engineered to (1) create Brillouin-based optical amplifiers, (2) tailor optical susceptibility, and (3) create new signal processing technologies in silicon photonics. Finally, we harness Brillouin-based opticalamplification to create the first silicon-based Brillouin lasers and we discuss their performance characteristics.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.