Recent advancements in active reconfigurable photonic devices have spurred interest in quantum information applications, ranging from computation to communications and sensing. Universal photonic processors (UPPs) play a crucial role in this domain, enabling the implementation of arbitrary unitary transformations on input photonic states. Common architectures for UPPs involve intricate interferometric meshes, with the reconfigurable Mach-Zehnder interferometer (MZI) as the fundamental building block.
In this work, we present the realization of an 8-mode UPP using direct femtosecond laser writing (FLW) as the fabrication platform. FLW allows rapid and cost-effective prototyping of waveguides in glass-based substrates, achieving low insertion losses (down to 0.13 dB cm−1 for propagation and 0.2 dB per facet for coupling), a critical requirement for quantum applications.
By incorporating compact curved deep isolation trenches and stable, efficient thermal phase shifters, we have reduced the size of the MZI unit cell compared to the current state-of-the-art in FLW fabrication. This reduction improves integration density and circuit complexity with respect to the current state-of-the-art devices for this fabrication platform. The phase shifters exhibit minimal power dissipation (∼ 38mW) and thermal crosstalk (∼ 20 %). The device operates at a wavelength of 925 nm, making it compatible with state-of-the-art quantum dot single-photon sources. It features 28 MZIs and 56 thermal phase shifters, with total insertion losses below 3 dB. Additionally, we describe a calibration process combining conventional methods with a machine learning optimization procedure, enabling the realization of unitary transformations with an average amplitude fidelity surpassing 0.99, showcasing the high precision required for quantum photonic applications.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.