A fiber-optic dosimeter (FOD) was fabricated using a plstic scintillating fiber, a plastic optical fiber, and a multi-pixel photon counter to measure entrance surface dose (ESD) in diagnostic radiology. Under changing tube current and irradition time of the digital radiography (DR) system, we measured the scintillating light and the ESD simultaneously. As experiemtnal results, the total counts of the FOD were changed in a manner similar to the ESDs of the semiconductor dosimeter (SCD). In conclusion, we demonstrated that the proposed FOD minimally affected the diagnostic information of DR image while the SCD caused serious image artifacts.
In this study, we fabricated a fiber-optic radiation sensor using three kinds of inorganic scintillation crystals with the same dimension, such as LYSO:Ce, YSO:Ce, and BGO. Gamma-ray energy spectra for Cs-137 were measured with three kinds of inorganic scintillators to select an optimum scintillator that is suitable to use for gamma-ray energy spectroscopy. The total counts of the scintillating lights, were also obtained according to the activity of Cs-137. As a result, the energy spectra measured using the three scintillators were clearly different, thereby they showed clear distinction about the energy resolution and position of the inherent photopeak of Cs-137. Although all scintillators had a linear response over the activity of Cs-137, we selected LYSO:Ce as an optimum scintillator because it provided good energy resolution and the highest light output in our experimental setup.
Cerenkov radiation occurs when charged particles are moving faster than the speed of light in a transparent dielectric medium. In optical fibers, the Cerenkov light also can be generated due to their dielectric components. Accordingly, the radiation-induced light signals can be obtained using optical fibers without any scintillating material. In this study, to measure the intensities of Cerenkov radiation induced by gamma-rays, we have fabricated the fiber-optic Cerenkov radiation sensor system using silica optical fibers, plastic optical fibers, multi-anode photomultiplier tubes, and a scanning system. To characterize the Cerenkov radiation generated in optical fibers, the spectra of Cerenkov radiation generated in the silica and plastic optical fibers were measured. Also, the intensities of Cerenkov radiation induced by gamma-rays generated from a cylindrical Co-60 source with or without lead shielding were measured using the fiberoptic Cerenkov radiation sensor system.
For real-time dosimetry in both radiation therapeutic and diagnostic applications, a newly-designed dual-mode fiberoptic dosimeter was developed using a scintillating probe and a Cerenkov probe. In this study, we measured the scintillating and Cerenkov lights simultaneously and analyzed the light intensities and spectra of their light signals for the performance evaluation of the proposed fiber-optic dosimeter.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.