Extreme ultraviolet lithography (EUVL) enables integrated circuit (IC) industry to manufacture chips with increased transistor density per volume unit, so the Moore’s law remains true to date. To support the endless requirement of reducing critical dimension (CD), chemically amplified resist (CAR) has been designed to address the resolution, line width roughness, and sensitivity (RLS) in nanoscale level. However, a good Litho performance from an EUV photoresist may not always be transferred into a good etch performance, limiting the stochastic defects after patten transfer is the key to achieve a good after etch inspection (AEI) defectivity. In this paper, we report the EUV photoresist design strategies to acquire good AEI defectivity with the understanding of CAR’s property in a defined pattern transfer scheme with special focus on small molecule in photoresist. The CAR’s Litho performance and the corelated etch performance will be discussed, the component etch rate and its correlation to photoresist etch performance will be covered.
We report on the relationship between resist make-up, filtration process & CH AEI defectivity for an advanced CAR resist with fast dose. In particular, the effect of a pattern transfer scheme on a resist platform with formulation & filtration variation is examined. Resist design & manufacturing strategies for continuous improvement of EUV CAR lithographic performance will be discussed.
The drive toward tighter pitch and higher density integrated circuits requires continual advancement in lithography. Advanced photolithography tools use extreme ultraviolet (EUV) light with a wavelength of 13.5nm. The high energy nature of EUV light generates secondary electrons in the photoresist that are responsible for the photochemistry that induces the solubility switch. This distinct mechanism has provided the driving force for the development of new photoresists that are sensitive to EUV and highly reactive toward secondary electrons. Despite the considerable change in acid generation mechanism going from DUV to EUV, chemically amplified photoresists continue to be leading photoresist candidates for new process nodes at low NA EUV (0.33 NA) and their use is expected to extend into early high NA (0.55 NA). Herein the after-developer defects (ADI) and EUV P36 LS trench printing performance of a series of chemically amplified photoresists (CAR) with distinct chemistry developed specifically for EUV lithography are compared. In particular, the relationship of different leaving group chemistries and polymer manufacturing processes on stochastic defectivity is explored as well as the connection to photoresist polymer hydrophobicity and homogeneity. The insights gained from this study guide design strategies for improvement of advanced chemically amplified photoresists for EUV lithography.
Conventional chemically amplified resists for extreme ultraviolet (EUV) lithography are comprised of three fundamental components: a photoreactive, acid-generating species (PAG), an acid reactive polymer for solubility switching, and a basic component for acid diffusion control. The PAG component is typically derived from an organic onium salt, wherein the cation’s capacity to capture secondary electrons generated upon EUV irradiation of the resist underscores their reactivity in lithographic applications. Thus, effective rational design of these materials is critical for controlling both sensitivity of the resist and feature regularity. Herein, we describe a robust method for in silico prediction of fundamental properties of onium cations including electron affinity, LUMO energy, and relative charge distribution. We correlate these theoretical values to experimental measurements and further to the influence of PAG cation properties on resist performance under EUV exposure. In addition to the reactive properties of these cations, we analyze these lithographic data in the context of the physicochemical properties of the cations, particularly polarity. In all, the results of this study suggest that while electron affinity of the PAG cation may drive reactivity in response to EUV exposure, multiple factors must be considered in the design of cations for optimal overall resist performance.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.