Pressure ulcers have been identified as a public health concern by the US government through the Healthy People 2010 initiative and the National Quality Forum (NQF). Currently, no tools are available to assist clinicians in erythema, i.e. the early stage pressure ulcer detection. The results from our previous research (supported by NIH grant) indicate that erythema in different skin tones can be identified using a set of wavelengths 540, 577, 650 and 970nm. This paper will report our recent work which is developing a handheld, point-of-care, clinicallyviable and affordable, real time multispectral imager to detect erythema in persons with darkly pigmented skin. Instead of using traditional filters, e.g. filter wheels, generalized Lyot filter, electrical tunable filter or the methods of dispersing light, e.g. optic-acoustic crystal, a novel custom filter mosaic has been successfully designed and fabricated using lithography and vacuum multi layer film technologies. The filter has been integrated with CMOS and CCD sensors. The filter incorporates four or more different wavelengths within the visual to nearinfrared range each having a narrow bandwidth of 30nm or less. Single wavelength area is chosen as 20.8μx 20.8μ. The filter can be deposited on regular optical glass as substrate or directly on a CMOS and CCD imaging sensor. This design permits a multi-spectral image to be acquired in a single exposure, thereby providing overwhelming convenience in multi spectral imaging acquisition.
We are developing a handheld multispectral imaging device to non-invasively inspect stage I
pressure ulcers in dark pigmented skins without the need of touching the patient's skin. This
paper reports some preliminary test results of using a
proof-of-concept prototype. It also talks
about the innovation's impact to traditional multispectral imaging technologies and the fields that
will potentially benefit from it.
We report the work of developing a hand-held (or miniaturized), low-cost, stand-alone, real-time-operation, narrow bandwidth multispectral imaging device for the detection of early stage pressure ulcers.
This paper introduces a novel idea, innovative technology in building multi spectral imaging based device. The benefit
from them is people can have low cost, handheld and standing alone device which makes acquire multi spectral images
real time with just a snapshot. The paper for the first time publishes some images got from such prototyped miniaturized
multi spectral imager.
During investigations of potential child and elder abuse, clinicians and forensic practitioners are often
asked to offer opinions about the age of a bruise. A commonality between existing methods of bruise aging
is analysis of bruise color or estimation of chromophore concentration. Relative chromophore concentration
is an underlying factor that determines bruise color. We investigate a method of chromophore concentration
estimation that can be employed in a handheld imaging spectrometer with a small number of wavelengths.
The method, based on absorbance properties defined by Beer-Lambert's law, allows estimation of
differential chromophore concentration between bruised and normal skin. Absorption coefficient data for
each chromophore are required to make the estimation. Two different sources of this data are used in the
analysis- generated using Independent Component Analysis and taken from published values. Differential
concentration values over time, generated using both sources, show correlation to published models of
bruise color change over time and total chromophore concentration over time.
Visual inspection of intact skin is commonly used when assessing persons for pressure ulcers and bruises. Melanin
masks skin discoloration hindering visual inspection in people with darkly pigmented skin. The objective of the project
is to develop a point of care technology capable of detecting erythema and bruises in persons with darkly pigmented skin.
Two significant hardware components, a color filter array and illumination system have been developed and tested. The
color filter array targets four defined wavelengths and has been designed to fit onto a CMOS sensor. The crafting process
generates a multilayer film on a glass substrate using vacuum ion beam splitter and lithographic techniques. The
illumination system is based upon LEDs and targets these same pre-defined wavelengths. Together, these components
are being used to create a small, handheld multispectral imaging device. Compared to other multi spectral technologies
(multi prisms, optical-acoustic crystal and others), the design provides simple, low cost instrumentation that has many
potential multi spectral imaging applications which require a handheld detector.
The detection and aging of bruises is important within clinical and forensic environments. Traditionally, visual and
photographic assessment of bruise color is used to determine age, but this substantially subjective technique has been
shown to be inaccurate and unreliable. The purpose of this study was to develop a technique to spectrally-age bruises
using a reflective multi-spectral imaging system that minimizes the filtering and hardware requirements while achieving
acceptable accuracy. This approach will then be incorporated into a handheld, point-of-care technology that is
clinically-viable and affordable. Sixteen bruises from elder residents of a long term care facility were imaged over time.
A multi-spectral system collected images through eleven narrow band (~10 nm FWHM) filters having center
wavelengths ranging between 370-970 nm corresponding to specific skin and blood chromophores. Normalized bruise
reflectance (NBR)- defined as the ratio of optical reflectance coefficient of bruised skin over that of normal skin- was
calculated for all bruises at all wavelengths. The smallest mean NBR, regardless of bruise age, was found at wavelength
between 555 & 577nm suggesting that contrast in bruises are from the hemoglobin, and that they linger for a long
duration. A contrast metric, based on the NBR at 460nm and 650nm, was found to be sensitive to age and requires
further investigation. Overall, the study identified four key wavelengths that have promise to characterize bruise age.
However, the high variability across the bruises imaged in this study complicates the development of a handheld
detection system until additional data is available.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.