Laser diodes are of paramount importance for on-chip telecommunications applications, and a wide range of sensing devices that require near-infrared sources. In this work, the devices under test are vertical-cavity silicon-integrated lasers (VCSILs) designed for operation at 845 nm in photonic integrated circuits (PICs). We focus on the analysis of the degradation of the optical performance during aging. To investigate the reliability of the devices, we carried out several stress tests at constant current, ranging from 3.5 mA to 4.5 mA representing a highly accelerated stress condition. We observed two different degradation modes. In the first part of the experiments, the samples exhibited a worsening of the threshold current, but the sub-threshold emission was unaffected by degradation. We associated this behavior to the diffusion of impurities that, from the p-contact, were crossing the upper mirror implying a worsening of the DBR optical absorption. In the second stage of the stress test, the devices showed a higher degradation rate of the threshold current, whose variation was found to be linearly correlated to the worsening of the sub-threshold emission. We related this second degradation mode to the migration of the same impurities degrading the top DBR that, when reaching the active region of the laser, induced an increase in the non-radiative recombination rate. In addition to that, we related the two degradation modes to the change in series resistance, which was ascribed to the resistivity increment of the top DBR first and of oxide aperture afterwards.
Transfer printing is an enabling technology for the efficient integration of III-V semiconductor devices on a silicon waveguide circuit. In this paper we discuss the transfer printing of substrate-illuminated III-V C-band photodetectors on a silicon photonic waveguide circuit. The devices were fabricated on an InP substrate, encapsulated and underetched in FeCl3, held in place by photoresist tethers. Using a 2x2 arrayed PDMS stamp with a pitch of 500 μm in x-direction and 250 μm in y-direction the photodiodes were transfer printed onto DVS-BCB-coated SOI waveguide circuits interfaced with grating couplers. 83 out of 84 devices were successfully integrated
The hybrid vertical-cavity laser is a potential low current, high-efficiency, and small footprint light source for silicon photonics integration. As part of the development of such light sources we demonstrate hybrid-cavity VCSELs (HC-VCSELs) on silicon where a GaAs-based half-VCSEL is attached to a dielectric distributed Bragg reflector on silicon by adhesive bonding. HC-VCSELs at 850 nm with sub-mA threshold current, >2 mW output power, and 25 Gbit/s modulation speed are demonstrated. Integration of short-wavelength lasers will enable fully integrated photonic circuits on a silicon-nitride waveguide platform on silicon for applications in life science, bio-photonics, and short-reach optical interconnects.
We present a vertical-cavity surface-emitting laser (VCSEL) where a GaAs-based “half-VCSEL” is attached to a
dielectric distributed Bragg reflector on silicon using ultra-thin divinylsiloxane-bis-benzocyclobutene (DVS-BCB)
adhesive bonding, creating a hybrid cavity where the optical field extends over both the GaAs- and the Si-based parts of
the cavity. A VCSEL with an oxide aperture diameter of 5 μm and a threshold current of 0.4 mA provides 0.6 mW
output power at 845 nm. The VCSEL exhibits a modulation bandwidth of 11 GHz and can transmit data up to 20 Gbps.
We present a GaAs-based VCSEL structure, BCB bonded to a Si3N4 waveguide circuit, where one DBR is substituted by
a free-standing Si3N4 high-contrast-grating (HCG) reflector realized in the Si3N4 waveguide layer. This design enables
solutions for on-chip spectroscopic sensing, and the dense integration of 850-nm WDM data communication transmitters
where individual channel wavelengths are set by varying the HCG parameters. RCWA shows that a 300nm-thick Si3N4
HCG with 800nm period and 40% duty cycle reflects strongly (<99%) over a 75nm wavelength range around 850nm. A
design with a standing-optical-field minimum at the III-V/airgap interface maximizes the HCG’s influence on the
VCSEL wavelength, allowing for a 15-nm-wide wavelength setting range with low threshold gain (<1000 cm-1).
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.