The Enhanced X-ray Timing and Polarimetry (eXTP) mission is a flagship astronomy mission led by the Chinese Academy of Sciences (CAS) and scheduled for launch in 2029. The Large Area Detector (LAD) is one of the instruments on board eXTP and is dedicated to studying the timing of X-ray sources with unprecedented sensitivity. The development of the eXTP LAD involves a significant mass production of elements to be deployed in a significant number of countries (Italy, Austria, Germany, Poland, China, Czech Republic, France). This feature makes the Manufacturing, Assembly, Integration and Test (MAIT), Verification and Calibration the most challenging and critical tasks of the project. An optimized Flight Model (FM) implementation plan has been drawn up, aiming at a production rate of 2 Modules per week. This plan is based on the interleaving of a series of parallel elementary activities in order to make the most efficient use of time and resources and to ensure that the schedule is met.
The enhanced x-ray timing and polarimetry mission (eXTP) is a flagship observatory for x-ray timing, spectroscopy and polarimetry developed by an international consortium. Thanks to its very large collecting area, good spectral resolution and unprecedented polarimetry capabilities, eXTP will explore the properties of matter and the propagation of light in the most extreme conditions found in the universe. eXTP will, in addition, be a powerful x-ray observatory. The mission will continuously monitor the x-ray sky, and will enable multi-wavelength and multi-messenger studies. The mission is currently in phase B, which will be completed in the middle of 2022.
The Large Area Detector (LAD) is the high-throughput, spectral-timing instrument onboard the eXTP mission, a flagship mission of the Chinese Academy of Sciences and the China National Space Administration, with a large European participation coordinated by Italy and Spain. The eXTP mission is currently performing its phase B study, with a target launch at the end-2027. The eXTP scientific payload includes four instruments (SFA, PFA, LAD and WFM) offering unprecedented simultaneous wide-band X-ray timing and polarimetry sensitivity. The LAD instrument is based on the design originally proposed for the LOFT mission. It envisages a deployed 3.2 m2 effective area in the 2-30 keV energy range, achieved through the technology of the large-area Silicon Drift Detectors - offering a spectral resolution of up to 200 eV FWHM at 6 keV - and of capillary plate collimators - limiting the field of view to about 1 degree. In this paper we will provide an overview of the LAD instrument design, its current status of development and anticipated performance.
The eXTP (enhanced X-ray Timing and Polarimetry) mission is a major project of the Chinese Academy of Sciences (CAS) and China National Space Administration (CNSA) currently performing an extended phase A study and proposed for a launch by 2025 in a low-earth orbit. The eXTP scientific payload envisages a suite of instruments (Spectroscopy Focusing Array, Polarimetry Focusing Array, Large Area Detector and Wide Field Monitor) offering unprecedented simultaneous wide-band X-ray spectral, timing and polarimetry sensitivity. A large European consortium is contributing to the eXTP study and it is expected to provide key hardware elements, including a Large Area Detector (LAD). The LAD instrument for eXTP is based on the design originally proposed for the LOFT mission within the ESA context. The eXTP/LAD envisages a deployed 3.4 m2 effective area in the 2-30 keV energy range, achieved through the technology of the large-area Silicon Drift Detectors - offering a spectral resolution of up to 200 eV FWHM at 6 keV - and of capillary plate collimators - limiting the field of view to about 1 degree. In this paper we provide an overview of the LAD instrument design, including new elements with respect to the earlier LOFT configuration.
The Medium Energy X-ray Telescope (ME), covering 5-30 keV, is one of the three main payloads of the Hard X-ray Modulation Telescope (HXMT). ME adopts an array of Si-PIN detectors. The detection area of one pixel is 56.25 mm2 , and the total detection area is 952 cm2 . The ME has a large active area while the pixel size is smaller. So the front-end electronics and forming electronics are realized by Application Specific Integrated Circuit (ASIC) chips. In this paper, we will describe the matching design of ME Si-PIN detector and ASIC, and the performance of the design. The energy response, temperature response, and dead time of a Two-Pixels Si-PIN detectors with the simplest readout electronics which is similar with ME, were tested on the Max Planck Institute for Extraterrestrial Physics PANTER X-ray test facility at Neuried by Munchen (Germany). The overall performance is quite similar to what was expected.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.