Currently, aerosol is considered as the major route for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission. A safe sterilization method with an excellent penetration capability and ability to sterilize free spaces is urgently needed. Previously it has been experimentally demonstrated that microwave-based sterilization can effectively inactivate the H3N2 Influenza A virus through the structure-resonant energy transfer (SRET) effect with a radiation field intensity following the IEEE standard. In order to utilize the same mechanism to inactivate the SARS-CoV-2 virus, firstly, the structural resonant frequencies with electromagnetic (EM) waves have to be identified. In this paper we report our design and implementation of a spectrum measurement chip utilizing the coplanar waveguide with pre-printed mask. With the mask, the repeatability of the insertion loss measurement can be well-controlled. Our microwave absorption spectra results revealed that the coplanar-waveguide chip can identify the resonant microwave frequencies of difference viruses, including the SARS-CoV-2 viruses, highlighting the potential applications for not only the virus detection but also the safe and non-thermal sterilization of public spaces. During the presentation, we will also report the resonant EM wave frequencies of various corona viruses monitored by the aforementioned chip.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.