Bioimaging of fluorescent probes provides a fantastic tool to visualize different cellular responses from various cells and to monitor target/probe interaction in cells. Previously, we introduced a small molecule named 3,6-bis(1-methyl-4- vinylpyridinium)carbazole diiodide (BMVC) as a fluorescent marker to light up live cancer cells for cancer diagnosis. Here we used time-gated fluorescence lifetime imaging microscopy (FLIM) of a BMVC isomer, 3,6-bis(1-methyl-2- vinylpyridinium)carbazole diiodide (o-BMVC) as a fluorescent probe to distinguish fixed cancer cells for cancer diagnosis. The time-gated FLIM results showed many more number of o-BMVC foci, characterized by the longer fluorescent decay time of o-BMVC (≥2.4 ns), in fixed cancer cells (HeLa, H1299, CL1-0, MCF-7, MCF-7/ADR, and SAS) than in fixed normal cells (MRC-5, IMR-90, and BJ). Further study of tissue biopsy, a total of 50 head and neck cancer (HNC) samples obtained during surgery and 20 normal oral samples collected from healthy volunteers showed that o-BMVC foci are hardly detectable in the normal oral epithelial cells. The average numbers of o-BMVC foci in tumors and in normal oral epithelial cells are 28.3 and 2.2, respectively. The receiver operating characteristic curve analysis showed the area under curve was 0.992, indicating that this method provides a very high accuracy for clinical detection of HNC cancers. We propose that the combination of BMVC test for live cells and o-BMVC test for fixed cells could provide a powerful tool for screening of human cancers.
The importance of guanine-quadruplex (G4) is not only in protecting the ends of chromosomes for human telomeres but also in regulating gene expression for several gene promoters. However, the existence of G4 structures in living cells is still in debate. A fluorescent probe, 3,6-bis(1-methyl-2-vinylpyridinium) carbazole diiodide (o-BMVC), for differentiating G4 structures from duplexes is characterized. o-BMVC has a large contrast in fluorescence decay time, binding affinity, and fluorescent intensity between G4 structures and duplexes, which makes it a good candidate for probing G4 DNA structures. The fluorescence decay time of o-BMVC upon interaction with G4 structures of telomeric G-rich sequences is ∼2.8 ns and that of interaction with the duplex structure of a calf thymus is ∼1.2 ns . By analyzing its fluorescence decay time and histogram, we were able to detect one G4 out of 1000 duplexes in vitro. Furthermore, by using fluorescence lifetime imaging microscopy, we demonstrated an innovative methodology for visualizing the localization of G4 structures as well as mapping the localization of different G4 structures in living cells.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.