The Ball Aerospace Pipeline Damage Prevention Radar (PDPR) project evaluated the use of airborne synthetic aperture radar (SAR) to detect vehicles and equipment located within buried pipeline right-of-way areas but obscured from visual detection. The project included the configuration of a commercial dual-band SAR/EO system for airborne operations, hardware and software modifications to optimize SAR change detection processing, and the execution of multiple flight tests to characterize SAR performance for the detection of equipment obscured by vegetation. Flight tests were conducted in 2016 and 2017 using X-band, Ku-band and ultra-wide band (UWB) SAR in urban and rural environments. Targets in the open showed close to 100% detection performance while covered target results depended on the amount of vegetative canopy. Detection "through" vegetation was generally better using the UWB system, but vegetation gaps frequently allowed higher spatial resolution detections with the Ku-band system. While large equipment was frequently identifiable in the Ku-band SAR images, having coincident EO imagery proved critical for context and automated deep learning based object identification. The detection performance difference between open and covered conditions clearly illustrates how a collection plan that optimizes open viewing conditions increases the overall probability of detection. This research was performed in response to the Damage Prevention topic through the Technology Development in the Pipeline Safety Research and Development Announcement DTPH5615RA00001.
Conference Committee Involvement (1)
Enabling Sensor and Platform Technologies for Spaceborne Remote Sensing
9 November 2004 | Honolulu, Hawai'i, United States
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.