Phase light modulator has been used in many underwater applications, such as turbulence mitigation, or laser beam shaping, to improve imaging and communication in the underwater environment. Liquid crystal on silicon (LCOS) or Liquid Crystal Display (LCD)-based phase light modulators are used in these applications. In recent years, Texas Instruments Digital Light Processing division developed a piston-mode Phase Light Modulator MEMS device (TI-PLM). One of the benefits of the device is its capability of supporting a high frame rate (i.e., 5.7kframes/sec). In this paper, we evaluated this TI-PLM device on an optical benchtop. While the main focus was the image quality of the Computer-Generated Hologram (CGH), the results also shed some light on this device’s capability for other PLM applications.
We develop a remote hyperspectral (HS) imaging work flow that relays spectral and spatial information of a scene via a minimal amount of encoded samples along with a robust data reconstruction scheme. To fully exploit the redundant and multidimensional structure of HS images, we adopt the canonical polyadic (CP) decomposition of multiway tensors. This approach represents our HS cube in a compressive manner while being naturally suitable for the linear mixing model, commonly used by practitioners to analyze the spectral content of each pixel. Under this low CP rank model we achieve frugal HS sensing by attenuating and encoding the incoming spectrum, thereby faithfully capturing the information with few measurements relative to its ambient dimensions. To further reduce the complexity of HS data, we apply image segmentation techniques to our encoded observations. By clustering the pixels into groups of endmembers with similar structure, we obtain a set of simplified data cubes each well approximated by a low CP rank tensor. To decode the measurements, we apply CP alternating least squares to each set of clustered pixels and combine the outputs to obtain our final HS image. We present several numerical experiments on synthetic and real HS data with various levels of input noise. We demonstrate that the approach outperforms state of the art methods, achieving noise attenuation while reducing the amount of collected data by a factor of 1/14.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.