Radiometric information offers valuable insights into the surface and material properties of remote targets. Such information can be obtained along with the surface geometry by laser scanning. However, local variations in the surface geometry and orientation can introduce a bias in the radiometric data, related to the angle of incidence (AoI). We demonstrate a supercontinuum-based hyperspectral laser scanning approach for high-precision distance measurements, and its applicability to mitigate the AoI effect by enabling an enhanced data-driven radiometric correction of the acquired intensities. Our experiments utilize a supercontinuum (SC) spectrally broadened to 570 to 970 nm from a 780 nm frequency comb. Distance measurements are derived from the differential phase delay of the intermode beat notes, while the backscattered reflection spectrum is captured using a commercial spectrometer over the spectral range of the SC output. We obtain hyperspectral point clouds with sub-mm range noise on natural targets (gypsum board and leaves of a plant used herein) placed at a distance of 5 m. The high-precision range measurements allow for correctly estimating the surface orientation and modeling the impact of the AoI on the acquired radiometric data. The estimated model is applied to correct the acquired hyperspectral signatures, which are further exploited to compute various vegetation indices commonly used as plant health indicators. Our results illustrate enhanced information content on the direct three-dimensional mapping of such spectral data of plant leaves with a reduced AoI bias. These results highlight new opportunities for future research into remote sensing of vegetation and material probing with increased sensitivity.
We demonstrate a supercontinuum-based hyperspectral laser scanning technique that provides high-precision distance measurements of natural surfaces along with their reflectance signature over the broad spectral range of the supercontinuum (SC) output. The SC used in our experiments is spectrally broadened to 570-970 nm from a 780 nm mode-locked femtosecond laser. Distance measurements are carried out by monitoring the differential phase delay of the intermode beat notes obtained from direct photodetection of the SC, while the backscattered reflection spectrum is acquired using a commercial spectrometer. We achieve a single-point range precision below 10 μm on natural targets (gypsum board and leaves of a plant used herein) placed at a stand-off distance of 5 m. Our results demonstrate the acquisition of hyperspectral point clouds together with sub-mm range noise on the scanned surface. This range performance is comparable to commercial state-of-the-art terrestrial laser scanners which traditionally employ a monochromatic laser source.We show the benefit of enhanced range precision toward correctly estimating the surface orientation and for radiometric calibration of the acquired intensities. Initial results illustrate the direct 3D mapping of spectral data of plant leaves with a reduced angle of incidence-related bias, highlighting new opportunities for future research into remote sensing of vegetation.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.