SPIE Journal Paper | 24 December 2022
KEYWORDS: Fractal analysis, Image segmentation, Data modeling, Performance modeling, Deep learning, Education and training, Statistical modeling, Medical imaging, Neural networks, Network architectures
PurposeU-Net is a deep learning technique that has made significant contributions to medical image segmentation. Although the accomplishments of deep learning algorithms in terms of image processing are evident, many challenges still need to be overcome to achieve human-like performance. One of the main challenges in building deeper U-Nets is black-box problems, such as vanishing gradients. Overcoming this problem allows us to develop neural networks with advanced network designs.ApproachWe propose three U-Net variants, namely efficient R2U-Net, efficient dense U-Net, and efficient fractal U-Net, that can create highly accurate segmentation maps. The first part of our contribution makes use of EfficientNet to distribute resources in the network efficiently. The second part of our work applies the following layer connections to design the U-Net decoders: residual connections, dense connections, and fractal expansion. We apply EfficientNet as the encoder to our three decoders to design three conceivable models.ResultsThe aforementioned three proposed deep learning models were tested on four benchmark datasets, including the CHASE DB1 and digital retinal images for vessel extraction (DRIVE) retinal image databases and the ISIC 2018 and HAM10000 dermoscopy image databases. We obtained the highest Dice coefficient of 0.8013, 0.8808, 0.8019, and 0.9295 for CHASE DB1, ISIC 2018, DRIVE, and HAM10000, respectively, and a Jaccard (JAC) score of 0.6686, 0.7870, 0.6694, and 0.8683 for CHASE DB1, ISIC 2018, DRIVE, and HAM10000, respectively. Statistical analysis revealed that the proposed deep learning models achieved better segmentation results compared with the state-of-the-art models.ConclusionsU-Net is quite an adaptable deep learning framework and can be integrated with other deep learning techniques. The use of recurrent feedback connections, dense convolution, residual skip connections, and fractal convolutional expansions allow for the design of improved deeper U-Net models. With the addition of EfficientNet, we can now leverage the performance of an optimally scaled classifier for U-Net encoders.