S. Agayeva, V. Aivazyan, S. Alishov, M. Almualla, C. Andrade, Sarah Antier, J. M. Bai, A. Baransky, S. Basa, P. Bendjoya, Z. Benkhaldoun, S. Beradze, D. Berezin, U. Bhardwaj, M. Blazek, O. Burkhonov, E. Burns, S. Caudill, N. Christensen, F. Colas, A. Coleiro, W. Corradi, M. Coughlin, T. Culino, D. Darson, D. Datashvili, G. de Wasseige, T. Dietrich, F. Dolon, D. Dornic, J. Dubouil, J.-G. Ducoin, P.-A. Duverne, A. Esamdin, A. Fouad, F. Guo, V. Godunova, P. Gokuldass, N. Guessoum, E. Gurbanov, R. Hainich, E. Hasanov, P. Hello, T. Hussenot-Desenonges, R. Inasaridze, A. Iskandar, E.E.O. Ishida, N. Ismailov, T. Jegou du Laz, D.A. Kann, G. Kapanadze, S. Karpov, R.W. Kiendrebeogo, A. Klotz, N. Kochiashvili, A. Kaeouach, J.-P. Kneib, W. Kou, K. Kruiswijk, S. Lombardo, M. Lamoureux, N. Leroy, A. Le Van Su, J. Mao, M. Masek, T. Midavaine, A. Moeller, D. Morris, R. Natsvlishvili, F. Navarete, S. Nissanke, K. Noonan, K. Noysena, N.B. Orange, J. Peloton, M. Pilloix, T. Pradier, M. Prouza, G. Raaijmakers, Y. Rajabov, J.-P. Rivet, Y. Romanyuk, L. Rousselot, F. Ruenger, V. Rupchandani, T. Sadibekova, N. Sasaki, A. Simon, K. Smith, O. Sokoliuk, X. Song, A. Takey, Y. Tillayev, I. Tosta e Melo, D. Turpin, A. de Ugarte Postigo, M. Vardosanidze, X.F. Wang, D. Vernet, Z. Vidadi, J. Zhu, Y. Zhu
GRANDMA is a world-wide collaboration with the primary scientific goal of studying gravitational-wave sources, discovering their electromagnetic counterparts and characterizing their emission. GRANDMA involves astronomers, astrophysicists, gravitational-wave physicists, and theorists. GRANDMA is now a truly global network of telescopes, with (so far) 30 telescopes in both hemispheres. It incorporates a citizen science programme (Kilonova-Catcher) which constitutes an opportunity to spread the interest in time-domain astronomy. The telescope network is an heterogeneous set of already-existing observing facilities that operate coordinated as a single observatory. Within the network there are wide-field imagers that can observe large areas of the sky to search for optical counterparts, narrow-field instruments that do targeted searches within a predefined list of host-galaxy candidates, and larger telescopes that are devoted to characterization and follow-up of the identified counterparts. Here we present an overview of GRANDMA after the third observing run of the LIGO/VIRGO gravitational-wave observatories in 2019 − 2020 and its ongoing preparation for the forthcoming fourth observational campaign (O4). Additionally, we review the potential of GRANDMA for the discovery and follow-up of other types of astronomical transients.
A slitless UBVR spectrograph was designed and built to be used on small telescopes. Tests and observations with this
instrument attached to the 60-cm telescope have shown that it is an effective tool for the study of transient events. A
number of features have been incorporated into the construction of the configuration to optimize its operations and data
processing. It is capable of registering the continuous spectrum in the wavelength range 3500 – 9000 Å. The wavelength
scale after calibration is accurate to about 30 Å. The grating spectrum has a resolution of R ≈ 100 around 4800 Å. The
spectrograph provides a moderate signal-to-noise ratio for stars up to magnitude 16. Equivalent widths of non blended
lines can be measured down to 0.7 Å. To identify intrinsic activity in spectra, a special software based on the theory of
count statistics was developed; it is enabling us to detect the relative power of fluctuations down to (10-5 – 10-6).
Observational data obtained with the aid of the spectrograph made it possible to discover new fine-scale features and
flare-triggered phenomena in flaring red dwarfs, as well as a low-amplitude rapid variability in spectra of
chromospherically active stars.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.