A kind of new light emitting diode (LED) based on Si p-n junction forward injection mechanism completely
compatible with standard Si-CMOS technology is designed and analyzed, which has higher efficiency than LED based
on Si pn junction in reverse bias breakdown mode. At same time according to reversibility of optoelectronic conversion,
the same Si-LED can be used as a photodetector (PD). The photoelectric characteristics of this device as both LED and
PD are simulated by the commercial software SILVACO. This device is expected to have wide application in next
generation optoelectronic integrated circuit (OEIC).
The earlier astable multivibrator formed by silicon tunnel diode has the disadvantage of low speed and non-modulation.
NDRHBT is a novel type of HBT with NDR characteristics and high speed. Its NDR characteristics can be modulated by
the base voltage VBE or base current IB. So the astable multivibrator formed by NDRHBT has the advantage of high
speed, high frequency, bistability, and frequency modulation by VBE or IB. Thus, it can be applied widely in high
frequency oscillation circuits and high speed-digital circuits.
In this paper, it is demonstrated that the frequency of the astable multivibrator can be modulated by base voltage VBE.
The experimental result shows that the frequency of time interval between two adjacent pulses f1 varies from 7×104Hz
down to 2.5×104Hz as VBE changes from 4.5V to 6.5V and exhibits near a linear relationship. So it is can be used as an
efficient voltage controlled frequency modulator for pulse signal in high speed digital circuits.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.