In recent years, biotechnology has been widely used in production and living. The research on processing biomaterials and developing them into new functional types has also been gradually carried out. In this paper, the influence of water content of microbial material on the extinction properties of infrared band was studied from the aspects of composition and structure. The sample of moisture content of microbial was established. The qualitative law between the water content of microbial particle and its absorption property was given. The quantitative relationship between the water content of microbial particle and its scattering property was calculated. Under the conditions of strong attenuation, the optimal solution of microbial materials based on water content is designed. The results show that when the transmittance is less than 10%, the complex refractive index n of microbial particles can be changed within the range of 0 < Δn ≤ 0.072 by controlling the amount of intracellular bound water. The controllability and variability of complex refractive index n can improve the extinction performance of microbial materials in the infrared band by up to 50%.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.