Surgeons often cannot see major vessels embedded in adipose tissue and inadvertently injure them. One such example occurs during surgical removal of the gallbladder, where injury of the nearby common bile duct leads to life-threatening complications. Near-infrared imaging of the intraoperative field may help surgeons localize such critical tissue-embedded vessels. We have investigated how continuous-wave (CW) imaging performs relative to time-gated wide-field imaging, presently a rather costly technology, under broad Gaussian beam-illumination conditions. We have studied the simplified case of an isolated cylinder having bile-duct optical properties, embedded at different depths within a 2-cm slab of adipose tissue. Monte Carlo simulations were preformed for both reflectance and transillumination geometries. The relative performance of CW versus time-gated imaging was compared in terms of spatial resolution and contrast-to-background ratio in the resulting simulated images. It was found that time-gated imaging offers superior spatial resolution and vessel-detection sensitivity in most cases, though CW transillumination measurements may also offer satisfactory performance for this tissue geometry at lower cost. Experiments were performed in reflectance geometry to validate simulation results, and potential challenges in the translation of this technology to the clinic are discussed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.