Non-invasive deep tissue imaging and focusing is highly demanded in biomedical research. However, for in vivo applications, the major challenge is the limited imaging depth, a of random scattering in biological tissue causing exponential attenuation of the ballistic component the light wave. Here we present the optical focusing with diffraction-limited resolution deep inside highly scattering media by using machine learning. Compared with conventional adaptive optics, method can not only provide high-speed sensor-less wavefront measurement with more than 90% accuracy, but also dramatically reduce photobleaching and photodamage. This technology paves the way for many important applications in fundamental biology research, especially in neuroscience.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.