The multi-instance multi-label (MIML) learning is a learning framework where each example is described by a bag of instances and corresponding to a set of labels. In some studies, the algorithms are applied to natural scene image classification and have achieved satisfied performance. We design a MIML algorithm based on RBF neural network for the natural scene image classification. In the framework, we compare classification accuracy based on the existing definitions of bag distance: maximum Hausdorff, minimum Hausdorff and average Hausdorff. Although the accuracy of average Hausdorff bag distance is the highest, we find average Hausdorff bag distance to weaken the role of the minimum distance between the instances in the two bags. So we redefine the average Hausdorff bag distance by introducing an adaptive adjustment coefficient, and it can change according to the minimum distance between the instances in the two bags. Finally, the experimental results show that the enhanced algorithm has a better result than the original algorithm.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.