Vapor condensation plays a crucial role in solar water-purification technologies. Conventional condensers in solar water-purification systems do not provide sufficient cooling power for vapor condensation, limiting the water production rate to 0.4 L m-2 hour-1. On the other hand, radiative dew condensation, a technique used by existing radiative dew condensers, only works at nighttime and is incompatible with solar water-purification technologies. Here, we develop daytime radiative condensers that reflect almost all solar radiation, and can thus create dew water even in direct sunlight. Compared to stateof- art condensers, our daytime radiative condenser doubles the production of purified water over a 24-hour period.
Here we report the demonstration of a Si/InAlGaAs/InP PIN cavity enhanced LED around 1.5 um by using membrane
transfer method. The silicon layer is acting not only as the optical guiding layer but also the hole injection layer. The
new hybrid integrated LED could be further developed as laser source for silicon photonics.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.