A fiber-optic carbon monoxide (CO)-sensing system with high sensitivity was proposed by combining Fabry–Perot interferometer (FPI) sensor with sensing material Au/ZnO. The sensitivity is 814 pm / % within the CO concentration range of 0% to 4%. The FPI sensor was fabricated by inserting single-mode fiber into a partially polymer-filled glass capillary to form an air cavity; the length of the air cavity is 76.83 μm. The temperature sensitivity of the FPI is −2.7 nm / ° C, which provides better conditions for measurement of CO. The catalyst Au/ZnO was prepared by coprecipitation, which could catalyze the oxidation of CO at ambient temperature and humidity. X-ray diffraction and scanning electron microscope analysis were employed to reveal the crystalline structure and morphology of the catalyst. To eliminate the influence of ambient temperature change on the accuracy of the concentration test, a fiber Bragg grating with central wavelength of 1550.24 nm was introduced in the experimental setup for the temperature compensation.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.