We proposed and demonstrated a high-efficiency Brillouin random fiber laser (BRFL) in a half-open linear random cavity incorporating with a self-inscribed dynamic fiber grating (DFG) for laser frequency stabilization. The DFG can be produced when the ion population distribution along erbium-doped fibers is periodically modulated by two coherent counter-propagating standing waves via the spatial hole-burning effect. Consequently, a BRFL with the linear half-open-cavity exhibited an optimized laser efficiency while the embedded DFG effectively purified the random modes and suppress the frequency drift caused by multiple random mode hopping. With a low laser threshold of 13.9 mW, the laser efficiency of up to 19.3% was observed, which is four times higher than that of the BRFL with a half-open ring cavity. It suggests that the proposed BRFLs could be beneficial to practical applications in fiber-optic sensing and coherent communication
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.