The resonant enhancement of both mechanical and optical response in microcavity optomechanical devices allows exquisitely sensitive measurements of stimuli in environment. We demonstrate and characterize a optomechanical oscillator based on a hollow microbubble and employ it as a sensor for acoustic wave. The output spectrum has a unique waveform that consists of fast and slow oscillation periods. The sensitivity of acoustic sensing has been greatly improved and the noise equivalent sound pressure as low as 0.89 Pa is obtained.
Micro-cavity sustaining whispering gallery mode (WGM) has been widely used in physical parameter sensing and biosensing applications. We explored three type micro-cavity enhancement methods to realize highly sensitive optical fiber sensors. Firstly, optofluidic-enhanced micro-cavity optical fiber sensors are discussed. Secondly, optomechanical oscillation micro-cavity optical fiber sensor is introduced using a hollow silica microbubble cavity. Finally, fiber laser enhancement mechanism is proposed to avoid the difficulty in direct fabrication of active micro-cavity.
Microfluidic optomechanical device are a unique optofluidics platform that can exhibit optomechanical oscillation in the 10-20 MHz, driven by radiation pressure (RP). The resonant enhancement of both mechanical and optical response in microcavity optomechanical devices allows exquisitely sensitive measurements of environment stimuli (pressure, force, sound speed change) and non-solid states of matter (freely flowing particles, viscous fluids). In this work, we experimentally investigate temperature tuning of these hollow-shell oscillators. We also demonstrate the effect of temperature on the frequency domain of optical machine oscillation resonance shift and applied it to the field of temperature sensing. Our result is a step towards optomechanical sensor in the field of temperature.
The early diagnosis of myocardial infarction can significantly improve the survival rate in clinical medicine, therefore the high sensitivity detection of myocardial infarction biomarkers, such as creatine kinase (CK), lactate dehydrogenase (LDH) and cardiac troponin (cTn), is very important. In this work, a thin-wall microtubule whispering gallery modes (WGM) cavity biosensor to detect myocardial infarction marker has been achieved. The thin-wall microtubule WGM cavity is simply fabricated by tapering the silica capillary with oxyhydrogen flame. Using the self-polymerization effect of dopamine, the antibody is modified on the inner wall of the microtubule cavity to achieve specific capture of the cTnI-TnC complex protein. Moreover, by introducing the WGM microtubule cavity into the erbium-doped fiber laser cavity, the lasing wavelength can be utilized for the label-free detection of the myocardial infarction biomarker. The proposed microtubule cavity biosensor has advantages of inherent microfluidic channel, label-free detection and low detection limit, making itself a potential sensing platform in early diagnosis of heart disease.
We propose and demonstrate a coherent anti-Stokes Raman scattering (CARS) spectroscopic fiber probe based on a tapered optical fiber. The fiber probe prepared by the fiber heating fused and tapered method ensures that the output optical power density is high enough to excite the CARS signal. We have been able to detect Raman spectra of various chemical samples. The CARS fiber probe has the potential to achieve high spatial resolution. These results pave the way for flexibility and miniaturization of CARS probes
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.