Increasing demand for configuration time aware processing with stringent constraints for flexibility necessitates the design and development of a dynamically fast reconfigurable processor. This research work presents results obtained from hybrid FPGA architecture design methodology proposed in earlier work. Hybrid architecture is formed of ASIC units and LUT based processing elements. ASIC units represent tasks or core clusters obtained through common sub-graph analysis between basic blocks within and across routines of computation intensive applications and are basically recurring patterns. Results show that partial reconfiguration with the use of computation cores embedded in a sea of LUTs offer potential for massive savings in gate density by eliminating the need for redundant sub-circuit pattern configurations. Since ASICs cover only parts of data flow graphs, remaining computations are implemented on LUT based reconfigurable hardware. A new packing algorithm is proposed to form LUT based processing elements. Packing cost function prioritizes reduction of input/output pins of the clusters being formed. Results show that significant savings in number of nets to be routed are obtained through proposed method.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.