To deal with multitask segmentation, detection and classification of colon polyps, and solve the clinical problems of small polyps with similar background, missed detection and difficult classification, we have realized the method of supporting the early diagnosis and correct treatment of gastrointestinal endoscopy on the computer. We apply the residual U-structure network with image processing to segment polyps, and a Dynamic Attention Deconvolutional Single Shot Detector (DAD-SSD) to classify various polyps on colonic narrow-band images. The residual U-structure network is a two-level nested U-structure that is able to capture more contextual information, and the image processing improves the segmentation problem. DAD-SSD consists of Attention Deconvolutional Module (ADM) and Dynamic Convolutional Prediction Module (DCPM) to extract and fuse context features. We evaluated narrow-band images, and the experimental results validate the effectiveness of the method in dealing with such multi-task detection and classification. Particularly, the mean average precision (mAP) and accuracy are superior to other methods in our experiment, which are 76.55% and 74.4% respectively.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.