The Line Emission Mapper (LEM) is a Probe mission concept developed in response to NASA’s Astrophysics Probe Explorer (APEX) Announcement of Opportunity. LEM has a single science instrument composed of a large-area, wide-field X-ray optic and a microcalorimeter X-ray imaging spectrometer in the focal plane. LEM is optimized to observe low-surface-brightness diffuse X-ray emission over a 30′ equivalent diameter field of view with 1.3 and 2.5 eV spectral resolution in the 0.2−2.0 keV band. Our primary scientific objective is to map the thermal, kinetic, and elemental properties of the diffuse gas in the extended X-ray halos of galaxies, the outskirts of galaxy clusters, the filamentary structures between these clusters, the Milky Way star-formation regions, the Galactic halo, and supernova remnants in the Milky Way and Local Group. The combination of a wide-field optic with 18′′ angular resolution end-to-end and a microcalorimeter array with 1.3 eV spectral resolution in a 5′ × 5′ inner array (2.5 eV outside of that) offers unprecedented sensitivity to extended low-surface-brightness X-ray emission. This allows us to study feedback processes, gas dynamics, and metal enrichment over seven orders of magnitude in spatial scales, from parsecs to tens of megaparsecs. LEM will spend approximately 11% of its five-year prime science mission performing an All-Sky Survey, the first all-sky X-ray survey at high spectral resolution. The remainder of the five-year science mission will be divided between directed science (30%) and competed General Observer science (70%). LEM and the NewAthena/XIFU are highly complementary, with LEM’s optimization for soft X-rays, large FOV, 1.3 eV spectral resolution, and large grasp balancing the NewAthena/X-IFU’s broadband sensitivity, large effective area, and unprecedented spectral resolving power at 6 keV. In this presentation, we will provide an overview of the mission architecture, the directed science driving the mission design, and the broad scope these capabilities offer to the entire astrophysics community.
The Line Emission Mapper X-ray Probe-class mission concept is based on a microcalorimeter array tuned to energies in the range 0.1 to 2 keV. The study of cosmic ecosystems defines the directed portion of the Line Emission Mapper (LEM) mission, thus LEM has been optimized for observations of diffuse X-ray-emitting gas, largely with very low surface brightness. To broaden the range of targets that general observers can study with LEM, we have investigated the particular needs for UV/optical bright stars and solar-system objects. X-ray microcalorimeters are susceptible to degraded energy resolution that can result from thermal noise from residual UV, optical, and IR radiation. Using the present baseline design of the microcalorimeter thermal filters, we compute the UV-IR loading expected from bright stars over the effective temperature range 3500 to 39,000 K and from solar-system objects. The dominant leak of out-of-band energy is in the far-UV around 1500 Å, with a secondary peak of throughput around 4000 Å. For stars with magnitudes V<10 and for all solar-system planets as well as the Moon, the loading is significant, indicating that additional UV/optical blocking is essential if bright objects are to be observed. We have investigated the efficacy of several filter options for optical-blocking filters on the LEM filter wheel, demonstrating that new technology development is not necessary to open up many of these classes of objects to investigation with the high spectral resolution of LEM.
In the 2020 Astrophysics Decadal Survey, the National Academies identified cosmic feedback and structure formation as a key question that should drive research in the upcoming decade. In response to this recommendation, NASA released a call for X-ray and IR probe-class missions, with a $1B cost cap. The line emission mapper (LEM) is a mission concept designed in response to this call. LEM is a single-instrument X-ray telescope that consists of a Wolter–Schwarzschild type I X-ray optic with a 4 m focal length, coupled with an X-ray microcalorimeter with a 30′ field of view (FoV), 15″ angular resolution, and 2.5 eV energy resolution [full-width half maximum (FWHM)], with a 1.3 eV FWHM energy resolution central subarray. The high throughput X-ray mirror combined with the large FoV and excellent energy resolution allows for efficient mapping of extended emission-line dominated astrophysical objects from megaparsecs to sub-pc scales to study cosmic ecosystems and unveil the physical drivers of galaxy formation.
The Normal-incidence Extreme Ultraviolet Photometer (NExtUP) is a smallsat mission concept designed to measure the EUV radiation conditions of exoplanet host stars, and F-M type stars in general. EUV radiation is absorbed at high altitude in a planetary atmosphere, in the exosphere and upper thermosphere, where the gas can be readily heated to escape temperatures. EUV heating and ionization are the dominant atmospheric loss drivers during most of a planet’s life. There are only a handful of accurately measured EUV stellar fluxes, all dating from Extreme Ultraviolet Explorer (EUVE) observations in the ‘90s. Consequently, current models of stellar EUV emission are uncertain by more than an order of magnitude and dominate uncertainties in planetary atmospheric loss models. NExtUP will use periodic and aperiodic multilayers on off-axis parabolic mirrors and a prime focus microchannel plate detector to image stars in 5 bandpasses between 150 and 900°A down to flux limits two orders of magnitude lower than reached by EUVE. NExtUP may also accomplish a compelling array of secondary science goals, including using line-of-sight absorption measurements to understand the structure of the local interstellar medium, and imaging EUV emission from energetic processes on solar system objects at unprecedented spatial resolution. NExtUP is well within smallsat weight limits, requires no special orbital conditions, and would be flown on a spacecraft supplied by MOOG Industries. It draws on decades of mission heritage expertise at SAO and LASP, including similar instruments successfully launched and operated to observe the Sun.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.