Significance. One of the modern trends in medical diagnostics is based on metabolomics, an approach allowing determination of metabolites which can be the specific features of disease. High-resolution gas spectroscopy allows investigation of the gas metabolite content of samples of biological origin. We present the elaboration of a method of studying diabetic and non-diabetic biological samples, prepared as pellets, by terahertz (THz) high-resolution spectroscopy.
Aim: The main idea of the work is studying the content of thermal decomposition gas products of diabetic and non-diabetic dried blood plasma and kidney tissues for revealing the set of gas-markers that characterized the diabetes by the THz high-resolution spectroscopy method.
Approach: We present an approach to study the diabetic and non-diabetic blood plasma (human and rats) and kidney tissues (rats), using high-resolution spectroscopy based on the non-stationary effect of THz frequency range. The methods of preparing the blood and kidney tissue samples as pellets and of vaporizing the samples were developed.
Results: The measurements of rotational absorption spectra of vapors at heating the pellets prepared from blood and kidney tissue were carried out in 118 to 178 GHz frequency range. The absorption lines appearing in spectra of the sample vapors were detected and identified. The molecular contents of thermal decomposition products differed for non-diabetic and diabetic samples; e.g., main marker is acetone appearing in the diabetic blood (human and rats) and in the diabetic kidney tissue.
Conclusions: Our paper illustrates the potential ability for determining the metabolite content of biological samples for diagnostics and prognosis of diseases for clinical medicine.
Significance: The creation of fundamentally new approaches to storing various biomaterial and estimation parameters, without irreversible loss of any biomaterial, is a pressing challenge in clinical practice. We present a technology for studying samples of diabetic and non-diabetic human blood plasma in the terahertz (THz) frequency range.
Aim: The main idea of our study is to propose a method for diagnosis and storing the samples of diabetic and non-diabetic human blood plasma and to study these samples in the THz frequency range.
Approach: Venous blood from patients with type 2 diabetes mellitus and conditionally healthy participants was collected. To limit the impact of water in the THz spectra, lyophilization of liquid samples and their pressing into a pellet were performed. These pellets were analyzed using THz time-domain spectroscopy. The differentiation between the THz spectral data was conducted using multivariate statistics to classify non-diabetic and diabetic groups’ spectra.
Results: We present the density-normalized absorption and refractive index for diabetic and non-diabetic pellets in the range 0.2 to 1.4 THz. Over the entire THz frequency range, the normalized index of refraction of diabetes pellets exceeds this indicator of non-diabetic pellet on average by 9% to 12%. The non-diabetic and diabetic groups of the THz spectra are spatially separated in the principal component space.
Conclusion: We illustrate the potential ability in clinical medicine to construct a predictive rule by supervised learning algorithms after collecting enough experimental data.
Drag-laden magnetic nanoparticles can deliver drugs to a zone of ischemic damage for various purposes of clinical medicine. THz spectroscopy of nanoparticles with adsorbed organic and biological molecules could enable estimation of drug delivery efficiency of the nanoparticles sample and curative effect of delivering chemical substance. The first task of this work was to simulate the contribution of nanoparticles and the shell of organic molecules (glycose) to the dielectric properties of the pressed pellets, consisting of the polyethylene and nanoparticles. The second task of this paper was to study experimentally the possibility of using terahertz radiation for spectral diagnosis of NPs based on iron oxide in a biologically inert shell of silicon dioxide drug-laden with a glycose.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.