The Star-Planet Activity Research CubeSat (SPARCS) is 6U CubeSat whose mission will be to observe low-mass stars in two ultraviolet (UV) bands. SPARCS will provide time-dependent spectral slope, intensity, and evolution of stellar radiation with the goal of understanding the short- and long-term variability of these targets.
Here we summarize the performance of SPARCam, the science camera for SPARCS. SPARCam is a two-detector camera system allowing independent commanding of two delta-doped, UV CCD47-20 detectors, separately optimized for the SPARCS near UV (NUV) and far UV (FUV) bands. The manuscript includes an overview of the UV detectors optimization and performance as well as a brief description of the camera electronics.
SPARCam was developed by the Jet Propulsion Laboratory and delivered to Arizona State University in October 2023.
The Start-Planet Activity Research CubeSat (SPARCS) is a NASA-funded mission led by Arizona State University, devoted to characterizing the UV emission of low-mass stars. During its nominal one-year mission, SPARCS will observe close to 20 low-mass stars, with the goal of understanding their short and long-term UV variability. SPARCS will be ready for launch in 2025. SPARCS’ payload is a 9-cm telescope paired with two delta-doped charge-coupled devices (CCDs). The data calibration converts the raw instrument counts into an average flux within the two ultraviolet bands (153 - 171 nm, 258 - 308 nm). While the system is only weakly sensitive in the infrared, the target stars are very bright at long wavelengths. This requires careful correction of the data for out-of-band emission. The system is being fully characterized on the ground to provide supporting calibration data. The calibration uses observations of very stable white dwarfs to achieve the 10% photometric accuracy requirement in both bands.
We discuss the final assembly, integration, and testing of the Star-Planet Activity Research CubeSat. SPARCS is a 6U CubeSat mission designed to monitor the dual-channel, far-UV (153-176 nm) and near-UV (258-308 nm) photometric activity of nearby low mass stars to advance our understanding of their evolution, activity, and the habitability of surrounding exoplanets. This paper details the assembly of the SPARCS instrument and the testing process to characterize and validate the performance of the payload prior to spacecraft integration. To test SPARCS, we have established a customized CubeSat AIT laboratory and thermal vacuum chamber at ASU equipped to handle CubeSats requiring meticulous contamination control for work in the FUV. After a brief overview of these facilities and the testing plan, we will detail the methods and data used to verify the performance of SPARCS and generate calibration products to reduce raw flight data to high-quality science products. The result will be the delivery of the first highly sensitive FUV astrophysics CubeSat which will inform exoplanet environments and future observations of these systems by facilities like the Habitable Worlds Observatory.
The National Aeronautics and Space Administration’s (NASA) Great Observatories Maturation Program (GOMAP) will advance the science definition, technology, and workforce needed for the Habitable Worlds Observatory (HWO) with the goal of a phase A start by the end of the current decade. GOMAP offers long-term cost and schedule savings compared with the “technology readiness level (TRL) 6 by preliminary design review” paradigm historically adopted by large NASA missions. Many of the key technologies in the development queue for HWO require the combined activities of (1) facility and process development for validation of technologies at the scale required for HWO and (2) deployment in the “real-world” environment of mission integration and test prior to on-orbit operations. We present a concept for the SmallSat Technology Accelerated Maturation Platform (STAMP), an integrated facility, laboratory, and instrument prototype development program that could be supported through the GOMAP framework and applied to any of NASA’s future Great Observatories (FGOs). This brief describes the recommendation for the first entrant into this program, “SmallSat Technology Accelerated Maturation Platform-1 (STAMP-1),” an ESPA Grande-class mission advancing key technologies to enable the ultraviolet capabilities of HWO. STAMP-1 would advance new broadband optical coatings, high-sensitivity ultraviolet detector systems, and multi-object target selection technology to TRL 6 with a flight demonstration. STAMP-1 advances HWO technology on an accelerated timescale, building on current research opportunities in space and earth sciences (ROSES) strategic astrophysics technology (SAT) + astrophysics research and analysis (APRA) programs, reducing cost and schedule risk for HWO while conducting a compelling program of preparatory science and workforce development with direct benefits for HWO mission implementation in the 2030s.
The Star-planet activity research CubeSat (SPARCS) is a 6U CubeSat mission focused on dual channel, SPARCS farUV (153-171 nm) and near-UV (260-300 nm), photometric monitoring of nearby M-stars. These data will advance our understanding of the typical day-to-day UV environments around M stars and how these conditions evolve over the stars’ multibillion-year lifespans; critical factors that constrain the potential habitability of planets orbiting M stars, informing the search for life in the galaxy. This paper lays out the detailed plan for the SPARCS science payload assembly, integration, and testing (AIT), including the optical calibration and performance measurement methods for the science telescope, thermal vacuum bakeouts for part cleaning, ongoing contamination monitoring methods, and spectral performance measurements of the assembled payload camera. We will provide updates on AIT proceedings at ASU and the SPARCS thermal vacuum chamber (TVAC) test facility built for UV CubeSat missions at Arizona State University’s School of Earth and space exploration.
The star-planet activity research CubeSat (SPARCS) is a small space telescope tasked with monitoring sunspots and flares of M-type stars in near ultra-violet (NUV) and far-ultraviolet (FUV) wavelengths. The SPARCS instrument is approaching its critical design review (CDR), and the team is moving forward with assembly integration and test (AI&T) plans for the payload and spacecraft. This paper focuses on the SPARCS thermal vacuum (TVAC) testing facility and thermal testing plan for the payload. The SPARCS TVAC testing chamber has been developed at Arizona State University (ASU) to provide a clean and relevant thermal environment for testing CubeSats and their payloads. The chamber can perform long-duration bakeouts at +80°C for cleaning and monitoring volatile and condensable contaminants with a thermal quartz crystal microbalance (TQCM) and a residual gas analyzer (RGA). These capabilities allow the SPARCS team to control and monitor the cleanliness of the test environment. An FUV monochromator is mounted to the side of the chamber, providing a calibrated light source to test and calibrate the payload. The SPARCS payload will be the first instrument tested in this chamber and demonstrate the capabilities of the SPARCS TVAC Test Facility. The team will verify the payload’s thermal capabilities, such as heating critical surfaces to expel contaminants and cooling the detectors for imaging. The thermal test plan details thermal cycling, hot/cold dwells, thermal balance, and instrument operations through the test. The SPARCS payload TVAC test aims to verify various performance requirements before integration with the spacecraft.
UV-SCOPE is a mission concept to determine the causes of atmospheric mass loss in exoplanets, investigate the mechanisms driving aerosol formation in hot Jupiters, and study the influence of the stellar environment on atmospheric evolution and habitability. As part of these investigations, the mission will generate a broad-purpose legacy database of time-domain ultraviolet (UV) spectra for nearly 200 stars and planets. The observatory consists of a 60 cm, f/10 telescope paired to a long-slit spectrograph, yielding simultaneous, almost continuous coverage between 1203 Å and 4000 Å, with resolutions ranging from 6000 to 240. The efficient instrument provides throughputs < 4% (far-UV; FUV) and < 15% (near-UV; NUV), comparable to HST/COS and much better than HST/STIS, over the same spectral range. A key design feature is the LiF prism, which serves as a dispersive element and provides high throughput even after accounting for radiation degradation. The use of two delta-doped Electron-Multiplying CCD detectors with UV-optimized, single-layer anti-reflection coatings provides high quantum efficiency and low detector noise. From the Earth-Sun second Lagrangian point, UV-SCOPE will continuously observe planetary transits and stellar variability in the full FUV-to-NUV range, with negligible astrophysical background. All these features make UV-SCOPE the ideal instrument to study exoplanetary atmospheres and the impact of host stars on their planets. UV-SCOPE was proposed to NASA as a Medium Explorer (MidEx) mission for the 2021 Announcement of Opportunity. If approved, the observatory will be developed over a 5-year period. Its primary science mission takes 34 months to complete. The spacecraft carries enough fuel for 6 years of operations.
The Star-Planet Activity Research CubeSat (SPARCS) is positioned to revolutionize our understanding of M-dwarf star evolution, activity, variability, and the habitability of surrounding exoplanets. SPARCS will be the first mission to observe M stars for long periods of time simultaneously using a dual channel FUV (153 – 171 nm) and NUV (260 - 300 nm) imaging system. Anticipated to launch in 2023, SPARCS will provide key UV context to future observations by TESS and JWST, and the spaceflight application of advanced new detector technologies will pave the way for their implementation into future missions like LUVOIR and HabEx. To realize the scientific potential of SPARCS against the challenges of the ultraviolet spectrum, we are developing the specialized facilities, procedures, and tests necessary to assemble, integrate, and test the SPARCS science payload and spacecraft. A thorough testing campaign will verify the performance of individual payload components and obtain calibration baselines from the fully assembled science instrument that are vital to the data reduction process and in-flight contamination monitoring. SPARCS requires extensive contamination control to maintain its sensitivity in the FUV and NUV, which means all of AIT must occur in controlled and precisely monitored environments. This work will result in: (1) The delivery of the assembled and tested SPARCS spacecraft for launch in 2023. (2) A comprehensive performance validation and calibration baseline for SPARCS including a measurement of system throughput to for every wavelength across the SPARCS bandpasses, maps of NUV and FUV sensitivity across the payload field of view, and a full set of calibration products like flatfield images and dark current measurements for data reduction and comparison with calibration products acquired in orbit to monitor spacecraft conditions. (3) The establishment of a fully operational CubeSat AIT laboratory at ASU equipped to handle CubeSats up to 6U in size requiring meticulous contamination control up to the levels required for working in the FUV. This paper presents the work completed so far on the development and early operation of assembly, integration, and testing facilities for SPARCS. A custom thermal vacuum (TVAC) chamber facility was created and one of Arizona State University’s cleanroom environments was retrofitted to accommodate a 6U ultraviolet CubeSat requiring strict contamination control. We will describe the TVAC facility design and early testing, the cleanroom operation and contamination monitoring, and the development of an optical system and procedures to characterize the optical performance.
The Star-Planet Activity Research CubeSat (SPARCS) 1 far ultra-violet (FUV) instrument will be tested and thermally characterized in a thermal vacuum (TVAC) chamber. The development and understanding of the thermal characteristics of the TVAC system are crucial to the verification of the thermal capabilities of the SPARCS payload. A TVAC chamber for testing FUV CubeSat instruments is in development at Arizona State University (ASU). The chamber will be used to test the SPARCS payload and future CubeSat missions. A thermal model of the thermal chamber has been developed for use with the SPARCS payload to correlate the model to test data. Correlating the model to test data will provide more realistic temperature predictions and reduce risk to the mission. The chamber model will be used along with the payload thermal model to determine preliminary test procedures creating a more realistic timeline for the testing.
SmallSats extend the frontiers of astrophysics, and present an opportunity with which to develop the next generation of scientists and engineers. Achieving high-impact research with SmallSats is increasingly feasible due to advances in technologies such as precision pointing, compact sensitive detectors and the miniaturization of propulsion systems. Science cases for SmallSat observatories (including CubeSats) being developed now include the discovery and characterization of exoplanets, stars, black holes and radio transients. SmallSats also represent a fantastic “on-ramp” to bring more people into mission development by providing opportunities for students and new PIs to get hands-on, end-to-end leadership, research and engineering experience. This combination of people development with new technology provides diverse opportunities to advance astrophysics knowledge.
The Star-Planet Activity Research CubeSat (SPARCS) is a 6U CubeSat under construction that is devoted to the photometric monitoring of M stars in the far-UV (FUV) and near-UV (NUV), to measure the time-dependent spectral slope, intensity and evolution of low-mass star high-energy radiation. We report on the progress made in the assembly, integration and test of the instrument payload at Arizona State University using a custom TVAC chamber and optical stimulus that provides calibration light sources and the custom contamination control environment that the FUV demands. The payload consists of a custom 90mm clear aperture telescope developed by Hexagon/Sigma Space, combined with a dichroic plate to separate the FUV and NUV beams developed by Teledyne Acton and Materion, married with twin focal plane array cameras separately optimized for their bandpasses as developed by JPL.
The Star-Planet Activity Research CubeSat (SPARCS) will be a 6U CubeSat whose mission will be to observe M stars in two ultraviolet (UV) bands—SPARCS far UV (S-FUV: 153-171 nm) and SPARCS near UV (S-NUV: 260-300 nm). SPARCS would be the first mission to provide time-dependent spectral slope, intensity and evolution of M dwarf stellar radiation; measurements that are critical to deciphering observations of planetary atmosphere from missions such as JWST. The baseline UV camera for SPARCS (SPARCam) includes the electronics boards and two UV detectors, one optimized for each of the SPARCS bands. The camera’s low-noise electronics are based on JPL’s compact, modular design and provide dynamic observation capabilities. For its detectors, SPARCam uses 2D-doped (i.e. delta-doped) CCDs for both channels. Here we present SPARCam development and characterization results prior to payload integration. Copyright 2019. All rights reserved.
KEYWORDS: Ultraviolet radiation, Stars, Atmospheric modeling, Space operations, Space telescopes, Planets, Telescopes, Sensors, Exoplanets, Control systems
Roughly 40 billion M dwarfs in our galaxy host at least one small planet in the habitable zone (HZ). The stellar ultraviolet (UV) radiation from M dwarfs is strong and highly variable, and impacts planetary atmospheric loss, composition and habitability. These effects are amplified by the extreme proximity of their HZs (0.1–0.4 AU). Knowing the UV environments of M dwarf planets will be crucial to understanding their atmospheric composition and a key parameter in discriminating between biological and abiotic sources for observed biosignatures. The Star-Planet Activity Research CubeSat (SPARCS) will be a 6U CubeSat devoted to photometric monitoring of M stars in the far-UV and near-UV, measuring the time-dependent spectral slope, intensity and evolution of low-mass star high-energy radiation.
Here we discuss high-performance UV detectors to be used with the planned Star-Planet Activity Research CubeSat (SPARCS). SPARCS is a 6U cubesat designed to monitor M stars (0.1 – 0.6 solar masses) in two photometric bands in the near UV and far UV (S-NUV, 260-300 nm; S-FUV, 150-170 nm). SPARCS targets range in mass and age, including young stars (10-20 Myr), which are likely forming terrestrial planets, to old stars with known transiting planets, allowing us to map the evolution of UV emission and flare rates. The spectral slope, variability and evolution of a host star’s highenergy radiation would provide realistic input stellar fluxes to planet atmospheric models, which would aide in understanding the evolution and habitability of a planet and in interpreting its transmission and emission spectrum. The baseline S-NUV detector is a 2D-doped (delta-doped or superlattice-doped) charge coupled device (CCD) optimized with a custom antireflection (AR) coating to achieve quantum efficiency (QE)>70% throughout the S-NUV band. The SNUV detector would be coupled with a stand-alone red-blocking filter that provides at least three orders of magnitude (i.e., ≥OD3) out-of-band suppression, critical for the observations of such cool, red stars. Their combined throughput would be >25% (peak) in the S-NUV. The baseline S-FUV detector is a 2D-doped CCD optimized for the S-FUV band; it includes an integrated filter designed to maximize in-band throughput with good red-leak suppression. As designed, the solar-blind silicon detector achieves peak QE>35% in the S-FUV band and ≥OD2 out-of-band suppression. SPARCS has baselined a dichroic design that allows for simultaneous S-NUV and S-FUV observation. SPARCS would advance 2D-doped detectors and detector-integrated out-of-band-rejection filter technologies for their potential application in future mission concepts such as LUVOIR and HabEx.
In this concept study, we are targeting to build a new instrument to sequentially observe exoplanet atmospheres and their parent’s stellar spectra over a significant time in NUV and FUV. The Compact Homodyne Astrophysics Spectrometer for Exoplanets (CHASE) offers integrated spectra over a wide field-of-view (FOV~40arcsec) in high spectral resolution (R>105) in a miniaturized architecture using no (or a small < 1m) primary mirror. CHASE’s wide FOV is compatible with the relaxed pointing requirements of current CubeSats and SmallSats which makes it readily qualifiable for space in a compact format and have the potential to enable major scientific breakthroughs.
From 2008 December to 2012 September, the NICI (Near-Infrared Coronagraphic Imager at the Gemini-South 8.1-m) Planet-Finding Campaign (Liu et al. 2010) obtained deep, high-contrast AO imaging of a carefully selected sample of over 200 young, nearby stars. In the course of the campaign, we discovered four co-moving brown dwarf companions: PZ Tel B (36±6 MJup, 16.4±1.0 AU), CD-35 2722B (31±8 MJup, 67±4 AU), HD 1160B (33+12 -9 MJup, 81± AU), and HIP 79797Bb (55+20-19MJup, 3 AU from the previously known brown dwarf companion HIP 79797Ba), as well as numerous stellar binaries. Three survey papers have been published to date, covering: 1) high mass stars (Nielsen et al. 2013), 2) debris disk stars (Wahhaj et al. 2013), and 3) stars which are members of nearby young moving groups (Biller et al. 2013). In addition, the Campaign has yielded new orbital constraints for the ~8-10 MJup planet Pic β (Nielsen et al. 2014) and a high precision measurement of the star-disk offset for the well-known disk around HR 4796A (Wahhaj et al. 2014). Here we discuss constraints placed on the distribution of wide giant exoplanets from the NICI Campaign, new substellar companion discoveries, and characterization both of exoplanets and circumstellar disks.
KEYWORDS: Stars, Planets, Adaptive optics, Exoplanets, Imaging systems, Telescopes, Monte Carlo methods, Gemini Observatory, Point spread functions, Space telescopes
Our team is carrying out a multi-year observing program to directly image and characterize young extrasolar
planets using the Near-Infrared Coronagraphic Imager (NICI) on the Gemini-South 8.1-meter telescope. NICI
is the first instrument on a large telescope designed from the outset for high-contrast imaging, comprising a
high-performance curvature adaptive optics (AO) system with a simultaneous dual-channel coronagraphic imager.
Combined with state-of-the-art AO observing methods and data processing, NICI typically achieves ≈2
magnitudes better contrast compared to previous ground-based or
space-based planet-finding efforts, at separations
inside of ≈2". In preparation for the Campaign, we carried out efforts to identify previously unrecognized
young stars as targets, to develop a rigorous quantitative method for constructing our observing strategy, and to
optimize the combination of angular differential imaging and spectral differential imaging. The Planet-Finding
Campaign is in its second year, with first-epoch imaging of 174 stars already obtained out of a total sample of
300 stars. We describe the Campaign's goals, design, target selection, implementation, on-sky performance, and
preliminary results. The NICI Planet-Finding Campaign represents the largest and most sensitive imaging survey
to date for massive
(>~ 1 MJup) planets around other stars. Upon completion, the Campaign will establish the best
measurements to date on the properties of young gas-giant planets at
-> 5-10 AU separations. Finally, Campaign
discoveries will be well-suited to long-term orbital monitoring and detailed spectrophotometric followup with
next-generation planet-finding instruments.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.