Thin-film getter integration is one of the key technologies enabling the development of a wide class of MEMS devices,
such as IR microbolometers and inertial sensors, where stringent vacuum requirements must be satisfied to achieve the
desired performances and preserve them for the entire lifetime. Despite its importance, the question about lifetime
prediction is still very difficult to answer in a reliable way. Here we present an experimental approach to the evaluation
of lifetime, based on an accelerated life test performed varying both the storage conditions and the getter area. A test
vehicle based on a resonator device was used. The hermeticity was evaluated by means of specific leak testing, while
MEMS behavior during the ageing test was studied monitoring device functional parameters and by residual gas analysis
(RGA). Unexpected results were observed leading to the discovery that methane is pumped by the getter below 100°C.
These results served as the inputs of a suitable model allowing extrapolating the device lifetime in operating? conditions,
and pointed out that RGA is an essential tool to correctly interpret the aging tests.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.