Newton's ring pattern is an typical interference fringe often encountered in optical measurements. The physical parameters, such as curvature radius, the ring's center can be estimated by analyzing it. Newton ring formed by spherical interference is two-dimensional Chirp signal, and its chirp parameters are almost impossible to be integers. However, the strict constraints of discrete Chirp Fourier transform (DCFT) and the existing discrete Modified Chirp Fourier transform (MDCFT) can only estimate the integer value part of parameter, which has a large recognition error. An improved MDCFT algorithm is proposed to further estimate the non-integer value part by using the object offset principle, thereby improving the estimation accuracy of Newton ring parameters. Experimental results verify the effectiveness and correctness of the proposed method.
Our study investigated an object-detection method based on the faster region-based convolutional neural network (faster R-CNN). The method was designed to determine the center of either a concentric circle or concentric ellipse. Specifically, the central spot of the image (as the object region) can be marked by the bounding box when the circular or elliptical image is used as input data for the faster R-CNN model. The center point of the bounding box can then be calculated according to the coordinates of the upper left and lower right corners, that is, the center position of the concentric circle or concentric ellipse. It is important to determine the center coordinates when taking optical measurements, as the curvature radius of optical components can thus be obtained. The effectiveness of this method is demonstrated through simulation images. Furthermore, we can obtain the center coordinates of the actual Newton’s rings image using the above method; according to the coordinate transformation method, the curvature radius can be estimated based on the center.
A method based on the fractional Fourier ridges for accurate phase demodulation of a single interferogram with quadratic phase is presented. The interferograms being analyzed may contain circular, elliptic or astigmatic fringes. In signal processing field, such interferograms can be called 2-D chirp-type signals. Since the fractional Fourier transform (FRFT) of a chirp signal is a function under the matched angle that is determined by chirp rates of the signal, so the method can be used to match the multiple chirp rates in chirp-type signals with multiple chirp components. In this work, the FRFT of all row (column) signals are firstly calculated, and the ridge of the FRFT amplitude of each row (column) signal in FRFT domain is recorded. Repeat the above process for each angle of a searching range. Then a ridge tracking approach is employed to determine the matched angle, which can be used to calculate the coefficient of the square term of row (column) coordinates. Moreover, under the matched angle, the ridge of the FRFT amplitude of each row (column) signal all lie on a straight line. The slope and constant term of the line can be used to calculate the coefficient of the linear term of row (column) coordinates and the coefficient of cross term, respectively. The same procedures are implemented to all column (row) signals to determine the coefficients of the square and liner term of column (row) coordinates. According to the obtained coefficients, the phase of the fringe pattern can be constructed without phase unwrapping operation. Furthermore, the present procedure is also capable of analysis of interferograms with or without circularly symmetry fringe distribution instead of using complex and time consuming algorithms for recovering phase from fringe patterns with closed fringes. Finally, the method is tested in simulated and real data.
Newton’s rings are the fringe patterns of quadratic phase, the curvature radius of optical components can be obtained from the coefficients of quadratic phase. Usually, the coordinate transformation method has been used to the curvature radius, however, the first step of the algorithm is to find the center of the circular fringes. In recent years, deep learning, especially the deep convolutional neural networks (CNNs), has achieved remarkable successes in object detection task. In this work, an new approach based on the Faster region-based convolutional neural network (Faster R-CNN) is proposed to estimate the rings’ center. Once the rings’ center has been detected, the squared distance from each pixel to the rings’ center is calculated, the two-dimensional pattern is transformed into a one-dimensional signal by coordinate transformation, fast Fourier transform of the spectrum reveals the periodicity of the one-dimensional fringe profile, thus enabling the calculation of the unknown surface curvature radius. The effectiveness of this method is demonstrated by the simulation and actual images.
Dictionary learning for sparse representation has attracted much attention among researchers in image denoising. However, most dictionary learning-based methods use a single dictionary which has limitation in sparse representation ability. To improve the performance of this methodology, we propose a multichannel color image denoising algorithm based on multiple dictionary learning. Compared with a fixed dictionary, multiple dictionaries have more powerful representation ability. The algorithm first uses a Gaussian mixture model to model the generic patch prior of an external natural color image dataset. Then, the multiple orthogonal dictionaries are initialized with the generic prior by applying singular value decomposition to the covariance matrix of each Gaussian component. The sparse coding coefficients and the multiple dictionaries are alternately updated for better fitting the desired image. Considering the difference of the noise levels in RGB channels, we use a weight matrix to adjust the contributions of different channels for the denoised result. The desired image is estimated based on maximum a posteriori framework. The extensive experiments have demonstrated that our proposed method outperforms some state-of-the-art denoising algorithms in most cases.
The fractional calculus (FC) deals with integrals and derivatives of arbitrary (i.e., non-integer) order, and shares its origins with classical integral and differential calculus. The fractional Fourier transform (FRFT), which has been found having many applications in optics and other areas, is a generalization of the usual Fourier transform. The FC and the FRFT are two of the most interesting and useful fractional areas. In recent years, it appears many papers on the FC and FRFT, however, few of them discuss the connection of the two fractional areas. We study their relationship. The relational expression between them is deduced. The expectation of interdisciplinary cross fertilization is our motivation. For example, we can use the properties of the FC (non-locality, etc.) to solve the problem which is difficult to be solved by the FRFT in optical engineering; we can also through the physical meaning of the FRFT optical implementation to explain the physical meaning of the FC. The FC and FRFT approaches can be transposed each other in the two fractional areas. It makes that the success of the fractional methodology is unquestionable with a lot of applications, namely in nonlinear and complex system dynamics and image processing.
Removal of noise is an important step in the image restoration process, and it remains a challenging problem in image processing. Denoising is a process used to remove the noise from the corrupted image, while retaining the edges and other detailed features as much as possible. Recently, denoising in the fractional domain is a hot research topic. The fractional-order anisotropic diffusion method can bring a less blocky effect and preserve edges in image denoising, a method that has received much interest in the literature. Based on this method, we propose a new method for image denoising, in which fractional-varying-order differential, rather than constant-order differential, is used. The theoretical analysis and experimental results show that compared with the state-of-the-art fractional-order anisotropic diffusion method, the proposed fractional-varying-order differential denoising model can preserve structure and texture well, while quickly removing noise, and yields good visual effects and better peak signal-to-noise ratio.
Signal reconstruction, especially for nonstationary signals, occurs in many applications such as optical astronomy, electron microscopy, and x-ray crystallography. As a potent tool to analyze the nonstationary signals, the linear canonical transform (LCT) describes the effect of quadratic phase systems on a wavefield and generalizes many optical transforms. The reconstruction of a finite discrete-time signal from the partial information of its discrete LCT and some known samples under some restrictions is presented. The partial information about its discrete LCT that we have assumed to be available is the discrete LCT phase alone or the discrete LCT magnitude alone. Besides, a reconstruction example is provided to verify the effectiveness of the proposed algorithm.
Newton’s rings pattern always blurs the scanned image when scanning a film using a film scanner. Such phenomenon is a kind of equal thickness interference, which is caused by the air layer between the film and the glass of the scanner. A lot of methods were proposed to prevent the interference, such as film holder, anti-Newton’s rings glass and emulsion direct imaging technology, etc. Those methods are expensive and lack of flexibility. In this paper, Newton’s rings pattern is proved to be a 2-D chirp signal. Then, the fractional Fourier transform, which can be understood as the chirp-based decomposition, is introduced to process Newton’s rings pattern. A digital filtering method in the fractional Fourier domain is proposed to reduce the Newton’s rings pattern. The effectiveness of the proposed method is verified by simulation. Compared with the traditional optical method, the proposed method is more flexible and low cost.
KEYWORDS: Quantization, Fringe analysis, Fourier transforms, Error analysis, Signal to noise ratio, Commercial off the shelf technology, Signal processing, Digital filtering, Image quality, Optical engineering
Newton’s rings fringe pattern is often encountered in optical measurement. The digital processing of the fringe pattern is widely used to enable automatic analysis and improve the accuracy and flexibility. Before digital processing, sampling and quantization are necessary, which introduce quantization errors in the fringe pattern. Quantization errors are always analyzed and suppressed in the Fourier transform (FT) domain. But Newton’s rings fringe pattern is demonstrated to be a two-dimensional chirp signal, and the traditional methods based on the FT domain are not efficient when suppressing quantization errors in such signals with large bandwidth as chirp signals. This paper proposes a method for suppressing quantization errors in the fractional Fourier transform (FRFT) domain, for chirp signals occupies little bandwidth in the FRFT domain. This method has better effect on reduction of quantization errors in the fringe pattern than traditional methods. As an example, a standard Newton’s rings fringe pattern is analyzed in the FRFT domain and then 8.5 dB of improvement in signal-to-quantization-noise ratio and about 1.4 bits of increase in accuracy are obtained compared to the case of the FT domain. Consequently, the image quality of Newton’s rings fringe pattern is improved, which is beneficial to optical metrology.
The continuous fractional Fourier transform (FRFT) can be interpreted as a rotation of a signal in the time-frequency plane and is a powerful tool for analyzing and processing nonstationary signals. Because of the importance of the FRFT, the discrete fractional Fourier transform (DFRFT) has recently become an important issue. We present the computation method for the DFRFT using the adaptive least-mean-square algorithm. First, the DFRFT computation scheme with single angle parameter of the signal block using the adaptive filter system is introduced. Second, considering the transform angles always change in practical applications, the DFRFT computation scheme with adjustable-angle parameter of the signal block using the adaptive filter system is presented. Then we construct two realization structures of the DFRFT computation with simultaneous multiple-angle parameters for each signal block. The proposed computation approaches have the inherent parallel structures, which make them suitable for efficient very large scale integration implementations.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.