Newton’s rings are the fringe patterns of quadratic phase, the curvature radius of optical components can be obtained from the coefficients of quadratic phase. Usually, the coordinate transformation method has been used to the curvature radius, however, the first step of the algorithm is to find the center of the circular fringes. In recent years, deep learning, especially the deep convolutional neural networks (CNNs), has achieved remarkable successes in object detection task. In this work, an new approach based on the Faster region-based convolutional neural network (Faster R-CNN) is proposed to estimate the rings’ center. Once the rings’ center has been detected, the squared distance from each pixel to the rings’ center is calculated, the two-dimensional pattern is transformed into a one-dimensional signal by coordinate transformation, fast Fourier transform of the spectrum reveals the periodicity of the one-dimensional fringe profile, thus enabling the calculation of the unknown surface curvature radius. The effectiveness of this method is demonstrated by the simulation and actual images.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.