Fundamental dynamic processes at the electronic contact interface, such as carrier injection and transport, become pivotal and significantly affect device performance. Time-resolved photoemission electron microscopy (TR-PEEM) with high spatiotemporal resolution provides unprecedented abilities of imaging the electron dynamics at the interface. Here, we implement TR-PEEM to investigate the electron dynamics at a coplanar metallic 1T′-MoTe2/semiconducting 2H-MoTe2 heterojunction. We find the non-equilibrium electrons in the 1 T′-MoTe2 possess higher energy than those in the 2H-MoTe2. The nonequilibrium photoelectrons collapse and relax to the lower energy levels in the order of picoseconds. The photoexcited electrons transfer from 1 T′-MoTe2 to 2H-MoTe2 with at a rate of ~0.8 × 1012 s−1 (as fast as 1.25 ps). These findings contribute to our understanding of the behavior of photoexcited electrons in heterojunctions and the design of in-plane optoelectronic devices.
We investigated in situ the interaction between a single gold nanorod and monolayer transition metal dichalcogenides (TMDCs) by atomic force microscopy nanomanipulation and single-particle spectroscopy.We observed that the resonant scattering peak of the hybrid redshifted, the full width at half maximum of the scattering resonance narrowed and the scattering intensity increased compared with those of the same nanorod before coupling with monolayer TMDCs. These results were understood with the aid of finite-difference time-domain simulations, the Fano model, and the classical oscillator model. Also, the spectral features varied with the distance between the nanorod and TMDCs, and the interaction was mainly attributed to the resonant energy transfer effect. Our findings clarify the influence of TMDCs on the plasmonic resonance and contribute to a deeper understanding of the plasmon exciton interaction.
Coupled plasmonic systems are of great interest and have many applications such as information processing and sensing. By choosing proper geometric configurations of coupled plasmonic systems, one can obtain various optical properties. However, some interesting and important effects could not be described by earlier methods. We develop an improved method for coupled plasmonic nanoparticle systems that maps geometric configurations to optical properties more accurately. With the improved method, we realize a low-loss cavity of metallic nanoparticles through a proper geometric configuration, and we find a limit to the loss in the metallic nano-cavity. We also use this method to realize an exceptional point and exceptional nexus in a hybrid plasmonic system. Finally, we predict asymmetric coupling, which leads to chirality and directional energy transfer.
We investigated in situ the coupling spectra of a single gold nanorod and monolayer transition metal dichalcogenides (TMDCs) using nanomanipulation technique and single-particle spectroscopy. The resonant scattering peak of the hybrid redshifted, the full width at half maximum of the resonance narrowed, and the scattering intensity increased compared with those of the same nanorod on the glass surface, i.e., before coupling with monolayer TMDCs. Also, the spectral features varied with the distance between the nanorod and TMDCs, and the coupling interaction should be dominated mainly by the resonant energy transfer effect rather than the electron transfer process.
In experiments, we demonstrated that luminescence quantum yield of single gold nanorods illuminated by continuous wave laser at wavelength of 532 nm depends on the excitation polarization, while that excited by 633 nm laser does not. The electrons in sp-band dominates the luminescence process when the 633 nm laser is applied, resulting in a constant quantum yield under different excitation polarizations. When the 532 nm laser is applied, both the electrons in d-band (interband transition) and sp-band (surface plasmon) involve in the luminescence process. The variation of quantum yield by the 532 nm laser is resulted from different efficiency of d-band interband transition and sp-band plasmon conversion into luminescence. Furthermore, we found that plasmon modes coupling effect can modulate strongly the plasmon emission efficiency by comparing the luminescence of two sets of the nanorods with different size. And smaller size GNRs often results in higher quantum yield of interband transition. These findings make a step to understand the luminescence process of plasmonic nanostructures and point out a rule to control it through plasmon mode coupling effect.
Detecting a single-molecule fluorescent spectrum with a low quantum yield needs to enhance the signal greatly overcome the noise disturbance. Based on plasmon-enhanced fluorescence method with single gold nanorods antenna, we measured the emission spectra of a single methylene blue or crystal violet molecules with an effective integration time of ~2.14 milliseconds at room temperature. These transient spectra have revealed the single-molecule spectral shape and intensity fluctuations. We found that the transient spectral shape is dominated by the molecule, while the plasmon resonance determines the averaged spectral shape. These fluctuations can be understood as transitions between metastable minima in the molecular potential-energy surface, as supported by complementary ab initio simulations.
In the surface-enhanced fluorescence (SEF) process, it is well known that the plasmonic nanostructure can enhance the light emission of fluorescent emitters. With the help of atomic force microscopy, a hybrid system consisting of a fluorescent nanodiamond and a gold nanoparticle was assembled step-by-step for in situ optical measurements. We demonstrate that fluorescent emitters can also enhance the light emission from gold nanoparticles which is judged through the intrinsic anti-Stokes emission owing to the nanostructures. The light emission intensity, spectral shape, and lifetime of the hybrid system were dependent on the coupling configuration. The interaction between gold nanoparticles and fluorescent emitter was modelled based on the concept of a quantised optical cavity by considering the nanodiamond and the nanoparticle as a two-level energy system and a nanoresonator, respectively. The theoretical calculations reveal that the dielectric antenna effect can enhance the local field felt by the nanoparticle, which contributes more to the light emission enhancement of the nanoparticles rather than the plasmonic coupling effect. The findings reveal that the SEF is a mutually enhancing process. This suggests the hybrid system should be considered as an entity to analyse and optimise surface-enhanced spectroscopy.
Light emission from single gold nanorods excited by continuous wave lasers was investigated by using ultra-narrow-band notch filters to obtain their complete spectral shape. The spectral profile of Stokes emission can be fitted by a Lorentzian line shape and that is dominated by localized surface plasmon resonance. Moreover, a clear anti-Stokes emission band can be always observed under different excitation wavelengths. The spectral shape of anti-Stokes emission can be fitted well with a Fermi-Dirac like line shape. Electron Fermi-Dirac distribution should influence the spectral shape of anti-Stokes emission for both interband and intraband transitions. It was also found that the intensity of anti-Stokes emission increases more rapidly in comparison with that of Stokes emission as illumination power increases on resonant excitation. This phenomenon can be understood as the temperature dependent of the electron Fermi-Dirac distribution due to photothermal effect.
Luminescence quantum yields (QYs) of gold nanoparticles including nanorods, nanobipyramids and nanospheres are
measured elaborately at single nanoparticle level with different excitation wavelengths. It is found that the QYs of the
nanostructures are essentially dependent on the excitation wavelength. The QY is higher when the excitation wavelength
is blue-detuned and close to the nanoparticles’ surface plasmon resonant peak. A phenomenological model based on
plasmonic resonator concept is proposed to understand the experimental findings. The excitation wavelength dependent
of QY is attributed to the wavelength dependent coupling efficiency between the free electrons oscillation and the
intrinsic plasmon resonant radiative mode. These studies should contribute to the understanding of one-photon
luminescence from metallic nanostructures and plasmonic surface enhanced spectroscopy.
Strong Stokes and anti-Stokes one-photon luminescence from single gold nanorods is measured in experiments. It is found that the intensity and polarization of the Stokes and anti-Stokes emissions are in strong correlation. Our experimental observation discovered a coherent process in light emission from single gold nanorods. We present a theoretical mode, based on the concept of cavity resonance, for consistently understanding both Stokes and anti-Stokes photoluminescence. Our theory is in good agreement of all our measurements.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.